

    
      
          
            
  
Network-based Ecosystem Modeling Framework (NEMF)

NEMF is a ecosystem modelling framework written in python.
It is designed to offer an easy to use method for modelling ecosystems with
low- to intermediate complexity. It consists of three conceptual parts:

[image: fig1] [image: fig2] [image: fig3]


	Network-based model description


	Forward modelling


	Inverse modelling

(For details see Introductory notes.)





The framework offers the functionality to handle non-equilibrium,
non-linear interactions.
For the typical use-cases, user do need to write any code but only provide a
model configuration.

The range of use-cases can easily be extended with simple
user-written functions without needing to
change any of the framework code.
NEMF offers an easy to use method to fit any model parameter such that the
model mimics the studied system.

For simplicity, the current version of the framework is limited to
non-spatially resolved models (box-models).

For a brief introduction to the ideas behind this library,
you can read the introductory notes.
A more detailed description can be found in the paper.
Visit the installation page to see how you can download
the package.
You can browse the examples to see what you can do with NEMF.
A more detailed description of the parts the library can be found in the
manual,
while the code is documented in the API reference section.

To see the code, please visit the github repository [https://github.com/465b/nemf].
To report a bug, please raise a ‘Issue’ in githubs issue tracker [https://github.com/465b/nemf/issues].
Please feel free to contact laurin.steidle@uni-hamburg.de with general
issues (i.e. if the installation fails).
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An introduction to NEMF

The network-based ecosystem modelling framework (NEMF) is a python software
tool to model ecosystems.
From a modelling perspective, it consists of three conceptual parts:


	Network-based model description:
Each model is described by a network. A network consists of two components.
Nodes, which describe ecosystem compartments, and edges, which link two
compartments together through some interaction.


	Forward modelling:
A model is defined by a set of differential equations implicitly defined by
the network structure.
Theses differential equations can be solved  numerically for a certain
initial state.
Hence, providing forecasts for how the model behave over time.


	Inverse modelling:
Fitting of model forecast to to observational or other reference data,
by varying model parameters.




It aims to keep the configuration complexity minimal for the user such
that it can be quickly learned and applied for i.e. rapid prototyping of
model ideas. To keep configuration and computational complexity low it
can only applied to non-spatially-resolved, also known as box-models.


Network and Forward

We will now go over the the first two parts of the model with the help of a
simple NPZD type model.
NPZD stands for the
Nutrient- Phytoplankton- Zooplanktion-Detritus model,
which is a simple well studied marine ecosystem model. The details of it
are not important here, as it is solely used as placeholder for any sort of
ecosystem model.

To calculate the forecast of a model we run the following few lines of code:

import nemf
model = nemf.load_model('exemplary_npzd_model.yml')
nemf.interaction_graph(model)
results = nemf.forward_model(model)
nemf.output_summary(results)





Let’s go through the lines one by one to see what happened:


	First we imported the nemf python library.

import nemf





This tells python that we want to us this library and because not
stated otherwise that we will address it as nemf



	We tell the nemf library which model we want to use.

model = nemf.load_model('exemplary_npzd_model.yml')





Models are typically defined in an extra file. This file contains the
description of the model in a humon-readable standard called YAML.
Hence, the file extension .yml More on the yml standard and how it
is used to define models can be found here.



	We visualize the network defined in the model configuration by

nemf.interaction_graph(model)





which returns the following plot:


[image: _images/network_diagram.png]


NEMF offers the option to draw the network defined in the model
configuration. This is helps to catch errors that might have happened
during the configuration and gives a nice overview over the model.
Each node represents a compartment in the model, i.e. a population or
a chemical quantity. The arrows between them show what flows from one
compartment to another while the label on the arrow describes how it
does that.



	We solve the differential equations underlying the model numerically
with:

results = nemf.forward_model(model)





The network implicitly defines a set of differential equation that couples
the compartments to each other, through the interactions between them.
The framework solves these differential equations to give a
forecast how the model is expected to evolve over time.
This is often also called ‘time evolution’.



	The result of the time evolution are visualized by calling

nemf.output_summary(results)





which generates the following plot:


[image: _images/time_evo.png]


Each line represents one compartment and how its associated quantity (i.e. a
population size) changes over time.








Model description via YAML configuration

In the example above, we assumed that a model (‘exemplary_npzd_model’) has
already been defined.
If we want to construct a new model, we need to write our own configuration
file.

There are three major parts of the configuration file:


	Compartments
contain a list of all model compartments, like species population pools or
nutrition pools.


	Interactions
contains a list of all interactions between compartments, like what eats what
and what happens when it dies


	Configuration
contains a list of technical details that decide the framework behavior
during the forecast and fitting.




The configuration file is written in the YAML standard.

It consists of what is called key-value pairs.
Each key is associated with a value.
These values can also be lists which are indicated by leading “-“, like
bullet points.
You can find details about the YAML standard on http://yaml.org/.
Note that the YAML website is itself perfectly valid yaml.

A simple example for the compartment section looks like this:

compartment:      # header of the compartment section
  A:              # name of compartment
    value: 1.0    # initial value of the compartment
  B:
    value: 2.0
  ..
  ..





Interactions are defined similarly:

A:B:              # flow from B to A (predator:prey)
- fkt: grazing    # type of interaction
- parameters:     # parameters used for the interaction
  - 1             # i.e. hunting rate
  - 2             #      food processing time
B:A
- fkt: natural mortality
- parameters:
  - 0.01          # natural mortality rate





A description of how this works in detail can be found in the
YAML section of the manual.




Inverse modelling

So far, we covered the first two aspect; the network-based approach and
the forward modelling.
We can also fit unknown, or imprecisely known parameters such that the forecast
resembles a provided data set as closely as possible.

We can achieve this with the inverse_model method.

import nemf
model = nemf.load_model('exemplary_npzd_model.yml')
results = nemf.inverse_model(model)
nemf.output_summary(results)





Most of this code is the same as previously shown.
The only new line is:

results = nemf.inverse_model(model)





Instead of calculating the forecast once as previously, the inverse_model we
now calculates it for different sets of parameters in such a way that we find
the best solution quickly.

However, for this to work we implicitly provided some additional information in
the yaml configuration file.
There are two things we need to provide:


	Reference data (i.e observational data)


	Optimized parameters




The reference data is expected do be in a separate file.
Details about its format and how it can be imported can be found in the
reference data section of the manual.

The parameters that shall be optimized are selected in the YAML configuration
file by adding the ‘optimise’ key and providing its upper and lower bounds in
which the method tries to find the best solution.

compartment:      # header of the compartment section
  A:              # name of compartment
    value: 1.0    # initial value of the compartment
    optimise:
      lower: 0    # lower and
      upper: 2    # upper bound during the fitting process





Detail on the configuration of the YAML file can be found in the
yaml section of the manual.

The results are then visualized with:

nemf.output_summary(results)





Which creates the following figure:


[image: Visualization of model fit]
Visualization of the results of the model fit.
The upper figure shows the tested parameter during the fitting process,
while the lower figure shows the “optimally” fitted model.




Next steps

You have a few options for where to go next. You might first want to learn how
to install namf on your machine.
Once that’s done, you can browse the examples to get a
broader sense for what kind problems nemf is designed for.
You can read through the manual for a deeper discussion of the
different parts of the library and how they are designed.
If you want to know specifics of the nemf functions implementations,
you could check out the API reference, which documents each
function and its parameters.









          

      

      

    

  

    
      
          
            
  
Examples

We will present some small examples in full to show what the model can be used
for and how.


Predator-Prey

The probably most famous ecosystem model is the so called “Lotka-Volterra”
model.
It has been developed in the 1920s and was designed to  described the population
dynamics of hares and lynxes.
It is described by the following set of equations,

[image: _images/288242e04bce2b79702c104e8bfad64e83eb8833.svg]eq:Lotka_Volterra

where x and y represent the predator and prey populations, while the remaining
variables are constants.

While famous, this minimalistic predator-prey model is not “closed”.
Hence, it implicitly depends on external compartments,  most importantly
nutrients for the prey.
We present a closed extension of this model, where the predator dies, is
transformed in some form of nutrient and consumed by the prey.

The interaction graph of this model is presented below.

[image: _images/graph.png]graph:closed_LV

This graph is generated by the NEMF framework base on the following
YAML-configuration-file:

# List of all present compartments in the model.
compartment:
  Nutrient:
    value: 0.1
    optimise:
  
  Predator:                       # name of the compartment
    value:  0.1                   # initial value of the compartment
    optimise:                     # if the above value shall not be optimized,
                                  #this remains empty
  Prey:
    value: 0.1
    optimise:

# List of all interactions/flows between compartments
interactions:
  Prey:Nutrient:                  # names of the interacting compartments
  - fkt: holling_type_I           # name of the type of interaction 
    parameters:                   # list of parameters required for interaction
    - 'Nutrient'                  # Parameters can also be other compartments
    - 2
    optimise:                     # whether or not some of these parameters
                                  # shall be optimized
  Predator:Prey:
  - fkt: holling_type_I
    parameters:
    - 'Prey'
    - 100

  Nutrient:Predator:
  - fkt: linear_mortality
    parameters:
    - Predator
    - 1
    
# list of details for the forward and inverse modelling modules
configuration:
  # time evolution / forward modelling
  time_evo_max: 100
  dt_time_evo: 0.1





You can read more about the YAML configuration file  here.

To create the graph and also calculate a forecast/time-evolution of the model
we execute the following lines of code:

import nemf

# provide the path of model/system configuration
model_path = 'path/to/the/yaml/file/presented/above/example.yml'

# load the model configuration
model_config = nemf.model_class(model_path)

# visualise the model configuration to check for errors
nemf.interaction_graph(model_config)

# for a time evolution of the model call:
output_dict = nemf.forward_model(model_config)

# the results of the time evolution can be visualized with:
nemf.output_summary(output_dict)





To read more about the functions present in the NEMF framework, take a look at
the API references.

This generates both the graph as shown above, and also the following
time-evolution of the model:
[image: _images/model_timeevo.png]plot:timeevo_LV




NPZD-Model (Nutrient-Phytoplankton-Zooplankton-Detritus)

The simple Predator Prey example presented the fundamentals of the Framework.
In the NPZD example used in the introduction we also
presented the inverse- or fitting-capabilities of the framework which we will
present now.

The model interaction graph looks like this:
[image: _images/graph1.png]graph:NPZD

This model is a little more complicated.
Hence, the configuration file will also be a little longer.

Note especially how we declare which parameters shall be fitted and the range in
which the fitted value shall remain.

# List of all present compartments in the model.
compartment:
  N:              # name of the compartment
    value:  1     # initial value of the compartment
    optimise:     # if the above value shall not be optimized this remains empty
      lower: 1.0e-9    # if not, lower and
      upper: 2         # upper constraints must be defined 
  P:
    value: 1 #.20835024e+00
    optimise:
      lower: 1.0e-9
      upper: 2
  Z:
    value: 1 #8.84333950e-01
    optimise:
      lower: 1.0e-9
      upper: 2
  D:
    value: 1 # 8.57333742e-01
    optimise:
      lower: 1.0e-9
      upper: 2

# List of all interactions/flows between compartments
interactions:
  
  P:N:                            # names of the interacting compartments
  - fkt: nutrient_limited_growth  # name of the type of interaction 
    parameters:                   # list of parameters required for interaction
    - 'N'                         # Parameters can also be other compartments
    - 0.27
    - 0.7
    optimise:                     # whether or not some of these parameters
                                  # shall be optimized
  Z:P:
  - fkt: holling_type_III
    parameters:
    - 'P'
    - 0.02
    - 0.575 
    optimise:
      - parameter_no: 2
        lower: 0.015
        upper: 0.025
      - parameter_no: 3
        lower: 0.5
        upper: 0.6
  D:P:
  - fkt: linear_mortality
    parameters:
    - 'P'
    - 0.04
    optimise:
  D:Z:
  - fkt: linear_mortality
    parameters:
    - 'Z'
    - 0.01
    optimise:
  N:D:
  - fkt: remineralisation
    parameters:
    - 'D'
    - 0.148
    optimise:


# list of details for the forward and inverse modelling modules
configuration:
  # time evolution / forward modelling
  time_evo_max: 1000
  dt_time_evo: 1





For the framework to fit we also need a date set to be used.
It will then try to find a model configuration (in the allowed constraints)
that lies closest to the reference data points.

For our example we use the following data set:

'Datetime','N','P','Z','D'
1.262297670e+09,1.51e-01,3.15e-01,1.74e+00,1.79e+00
1.262297681e+09,7.22e-01,4.97e-01,1.60e+00,1.17e+00
1.262297692e+09,5.23e-01,1.13e+00,1.66e+00,6.69e-01
1.262297703e+09,4.98e-02,9.03e-01,1.94e+00,1.09e+00
1.262297714e+09,2.82e-02,4.97e-01,1.93e+00,1.54e+00
1.262297725e+09,8.95e-02,3.29e-01,1.79e+00,1.79e+00
1.262297736e+09,5.07e-01,3.92e-01,1.64e+00,1.45e+00
1.262297747e+09,7.57e-01,9.44e-01,1.60e+00,6.88e-01
1.262297758e+09,9.99e-02,1.07e+00,1.89e+00,9.35e-01
1.262297769e+09,2.52e-02,5.88e-01,1.95e+00,1.42e+00
1.262297780e+09,5.41e-02,3.58e-01,1.83e+00,1.74e+00
1.262297791e+09,3.04e-01,3.30e-01,1.68e+00,1.67e+00





Read more about the reference data format here.

To tell the framework to perfore a fitting-run we execute the following small
script. It will also generate the interaction graph above and will draw a
plot presenting the result.

import nemf

# provide the path of model/system configuration
model_path = 'path/to/the/yaml/file/presented/above/example.yml'
reference_data_path = 'path/to/the/data/file/representing/the/model_ref.csv'

# load the model configuration
model_config = nemf.model_class(model_path)

# visualise the model configuration to check for errors
nemf.interaction_graph(model_config)

# for a simple time evolution of the model call:
output_dict = nemf.inverse_model(model_config)

# the results of the time evolution can be visualized with:
nemf.output_summary(output_dict)





which will create the following plot:
[image: _images/fit_results.png]plot:NPZD_fit

In the top you can see the different set tested during the fitting process.
The bottom half shows the “fitted” model time evolution,
which represents the frameworks best guess for the parameters.
The reference data points are shown as dashed lines.




Enzymatic Reaction

[placesholder]







          

      

      

    

  

    
      
          
            
  
A novel three step, network-based, general ecosystem modeling framework

Below, you can find the pre-published paper that provides a
bigger picture of the framework and its key features.

A novel three step network-based general ecosystem  modelling framework [https://arxiv.org/]





          

      

      

    

  

    
      
          
            
  
Installation


On Linux

Python and its package manger (pip) should be preinstalled.
Hence, it can simply be installed through:

pip install nemf








On Windows:


Using pip

If you haven’t installed python already,
get the latest python version from
here [https://www.python.org/downloads/windows/].
This also installs pythons integrated package manager (pip).Then, the following install command can be used in windows powershell:

python -m pip install nemf








Using Anaconda

Alternatively, you can use Anaconda to manage both the python installation
and your python packages.

To do so, download and install Anaconda from their
homepage [https://www.anaconda.com/products/individual]

After Anaconda is installed you can use Anaconda Prompt to install the package
by executing

conda install nemf










On Mac

If you haven’t installed python already,
get the latest python version from
here [https://www.python.org/downloads/mac-osx/].
Scroll down to get the “macOS 64-bit installer”

To installs pythons integrated package manager (pip).

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
python get-pip.py





Then, the following install command can be used in the terminal:

python -m pip install nemf






Using Anaconda

Alternatively, you can use Anaconda to manage both the python installation
and your python packages.

To do so, download and install Anaconda from their
homepage [https://www.anaconda.com/products/individual]

After Anaconda is installed you can use Anaconda Prompt to install the package
by executing

conda install nemf













          

      

      

    

  

    
      
          
            
  
Manual

Manual



	Conceptual overview of library

	Overview of the YAML configuration file

	Interaction Functions

	Reference Data









          

      

      

    

  

    
      
          
            
  
Conceptual overview of library


ODE’s and their time evolution

To keep it as general as possible we do not assume anything about the dependency of the model on the optimized input parameters.
Therefore, we are required to study their effect on the model by examining the results of the integrated ODE’s.

We assume a first-order coupled ODE system of the following form:
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Overview of the YAML configuration file

The idea of this configuration file is to provide a simple, well structured, easily human-readable configuration of the full framework.
A run of the framework is fully determined by this configuration file.
It in
This contains the configuration of the interaction network, the resulting ODEs,
their time integration, the fitting methods and its configuration including the
reference to the data that shall be used to fit.

If you first want to take a look at a rough overview of the library,
see README.md.
If you would like to get a better understanding how the library works internally,
see README_concept.md.

Even a the small NPZD-type model that is presented in the library overview
has numerous interactions and many more parameters and constants.
In addition to the configuration of the model,
we also need to define what parameters we want to fit and how.
Therefore, the configuration of them can becomes become confusing and we
we which need a clear structure to define them.
To avoid loosing track of all these individual things,
we store all in one well structured file.
YAML provides a ideal format for this,
since it is easily readable by humans as well as machines.


What is defined in the file?

The file contains three sections: Compartments, Interactions, Configuration.
Compartments and Interaction are used to construct the network that is used to
construct the set of ODEs.
Configuration defines the methods for time integration and fitting.


Compartments

Compartments are the observed and modelled quantity of the ODE system.
In the NPZD model, they are:
(N)utritients, (P)hytoplankton, (Z)ooplankton, (D)etritus.
All are counted in a shared currency, i.e. carbon mass.

The relevant information that needs to be defined is:


	name


	initial value (in the time evolution)


	upper and lower bound, if this value shall be fitted




In the YAML format this looks like the following:

compartment:           # header of the compartment section
  N:              # name of compartment 
    value: 1.0    # initial value of the compartment
    optimise:     
      lower: 0    # lower and
      upper: 2    # upper bound during the fitting process
  P:
    value: 1.0
    optimise: null # no fitting required for this compartment





A more detailed description of all the possible options is provided further down.




Interaction

Interactions represent any flow from one compartment to an other.
A interaction is described either by a function (keyword: ‘fkt’)
defined in the framework library (see models.py/#interaction_models),or by a user defined function.
The only condition to the function name provided in the yaml file
is that has to match the function known to the python interpreter exactly.

In addition to the name of the compartments and their interaction function,
we require the set of parameters used in the function to be defined.
These can either be constants, or compartments.
Furthermore, the direction of the flow needs to be defined (‘sign’).

We can define individual parameters to be fitted.
This is done by providing the index of the parameter (i.e.: second parameter)
and its range.
Naturally, this does not apply if the selected parameter is a compartment
because they are calculated during the time evolution.

A small example of the interaction of between N and P might look like the following:

interactions:
  # the functions are automatically multiplied by the value
  # of the second compartment 
  N:P:                              # name of source:destination of the flow
  - fkt: nutrient_limited_growth   # function defining the type of flow
    parameters:
    - 'N'                           # the first parameter is the current value
    - 0.27                          # of the 'N' compartment
    - 0.7
    sign: '-1'                      # direction of flow (from P to N)
    optimise:
      - parameter_no: 2             # second parameter (0.27) is optimized
        lower: 0.1                  # and values in the range of 
        upper: 0.3                  # [0.1,0.3] are allowed to be used





A crucial implementation detail is, that by default, an interaction is always linear with respect to the second named compartment.
Meaning that if I want to model the following flow,
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Interaction Functions

A short description what interaction functions are, how they are used and how
they are implemented.


General

Compartments in the model are linked through flows.
These flows, are characterized through, what we call, interaction functions.
Each interaction function precisely describe the change per time step between
two compartments.
[ref paper for details]

The user has to deicide what type of interaction suits best to describe an
interaction between to compartments.
A common examples of such types are
holling type [https://en.wikipedia.org/wiki/Functional_response]
functional responses.
A more simple example might be simple linear mortality, where a percentage of
compartment dies and is transformed into some sort of detritus.




Implementation

The framework offers a wide range of typical functional responses to be chosen
as an interaction function.


Conceptually

Conceptually a interaction function f is of the form:
f(a,b,c, … ) -> y
where a,b,c are the interaction parameters, such a natural mortality rate or
the amount of predators. y is a scalar representing the change per time step
in the “flow-destination” compartment.

The user has to decide on which function f they want to use to represent a
certain interaction, as well as to provide the function dependent parameter
a,b,c …
This could be for example a linear mortality of the formf(alpha,A) = alpha * A
where alpha represents a mortality rate, expressed in units of (unit of A)/time.




Technically

For technical reasons this is implemented slightly different.
Each interaction function also takes the a list of all compartments, including
the name or index of the origin and destination compartment.
Hence, the previous function signature ends up looking like this:

f(X,[ i_origin,j_destination ],a,b,c, … ) -> y,

where X represents the array containing all compartments, and i and j represent
the corresponding indices of the origin and destination compartments.






Units

In Ecology, or in Biology in general there are often many different units used
to describe similar things.
Therefore, it can sometimes be difficult to gather all the necessary information
in a consistent form to use them in interaction functions.

Particular attention is therefore required when creating the interaction
functions, as any wrongly interpreted or transformed unit may render the model
invalid.

In general, the unit of an interaction function, as for a compartment, are
arbitrary.
It is up for the user to decide what kind of unit they may like to use to
represent their model.
However, this design choice has to be consistent in the entire model.

As the interaction functions represent changes in model compartment over time,
they need to be expressed as a rate of the same unit as the corresponding
compartment that they are summed up with.

I.e.: Assume we wish to represent the flow between two compartments A and B.
Compartment B is described in units of gram. If we wish to describe a flow from
compartment A to compartment B, this flow needs also to be expressed in units of
gram as it is effectively summed up with the quantity in compartment B.

We strongly recommend, that when designing an interaction function, a sanity
check is performed to verify that all units used add up to the necessary one.
I.e.:
In a simple example the flow from A to B might be represented by a linear function f_AB of the form:f_AB = alpha * A

Because f_AB is added to B for every time step dt, f_AB needs to take the form of a rate. If unit_B is the unit of the compartment B and the time steps are expressed in seconds than f_AB needs to add up to the unit unit_B/s. Hence, alpha needs to be in the unit 1/s.
Otherwise the interaction is invalid, and with it the resulting model.

In general compartments might have different units.
However, to keep the models simple and avoid further confusion in the choice of unit we designed the framework ins such a way that all compartments need to share a common unit.
An example of such a shared unit might be carbon mass in kg, in contrast to a wet weight of a certain species.




Renaming or providing user-defined interaction functions

Even a simple model can contain many different interactions.
However, often many of those interaction share the same underlying behavior.
I.e. a natural mortality might scale linearly with the total population just as
a exudation process might scale linearly as well.
For model simplicity we recommend using the same function to represent these
interactions. Nevertheless, it might be helpful to distinguish the processes
with different names. This is especially helpful when drawing a larger model as
a network, as it helps to identify the actual processes one wants to describe.

For this reason, the model allows to rename existing interaction functions
easily by the user.
This can be achieved by two different ways:


	The first option is to define a list of the alternative names in the yaml
configuration file. An example of this might look like:

configuration:
  [...]
  alternative_interaction_names:
    'alternative_name_one': 'existing_function'
    'alternative_name_two': 'existing_function'







	The second option is to define them in the python script that is executed to run
the model.
In that case the newly written or renamed functions
need to be past to the function import_interaction_functions([func1,func2,…])

To give an example:


	In the case of renaming a existing function

import nemf
alternative_name_one = existing_function
alternative_name_two = existing_function

nemf.model.import_interaction_functions([alternative_name_one,alternative_name_two])







	When a new interaction function is written, it has to use the same signature
as the existing ones. See interaction functions code documentation [https://nemf.readthedocs.io/en/latest/nemf.html#module-nemf.interaction_functions]

Currently something like this would be expected:

def new_function(X, ii, jj, args):
    [...] # calculates the changes per time step
    return df

import nemf
nemf.model.import_interaction_functions([new_function])
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Reference Data


Why?

A major part of the NEMF framework is its capability to inverse model or
fit a designed model output to data. These data sets might for example
be measurements take in the field. They could also be some sort of
expected behavior by the modeler. I.e. something like: “if my
assumptions are correct, I expect this to converge to twice the size of
the other compartment” However they were created, the user needs to
provide them somehow to the framework. The framework expects the data in
a standardized form. This ensures that the data is interpreted correctly
while avoiding tedious data import configurations by the user,




Format

The format required is sometimes referred to as the “tidy-data” format.
We expect rows to be ‘observations’ of the system. The columns represent
the compartments in the model.




Example

Assume that A & B are names of two compartments in the model. Further,
assume that t_i is the time at which the i’th observation took place.
A(t_i) represents the value of the compartment A at the specific moment
in time.

A data set containing several observations may then look like the
following table:








	time

	A

	B





	t_1

	A(t_1)

	B(t_1)



	t_2

	A(t_2)

	B(t_2)



	t_3

	A(t_3)

	B(t_3)






An other potential outcome is that the desired state of the model is a
steady-state. Meaning, that the described compartment is expected to
converge to a certain value. In that case the we expect that the
compartment will reach the steady-state value at t=infinity. Such
situation is expected to be described by








	time

	A

	B





	inf

	A(inf)

	B(inf)






The framework does not specifically enforce a convergence as
this behaviors is governed by the model. Enforcing to only consider
steady-states in the optimization process is currently no possible in
the framework. This means that the model might reach the desired values
A(inf) & B(inf) at the end of the time evolution while the model has not
(yet) converged. To avoid such an output it is possible to specify the
the steady-state solution repeatably as in the first table. However, the
values for A and B remain the same for all time steps. This suppress
non-steady-states solutions in the model optimization.


Note

It is not possible to mix the ‘inf’ timestamp with date-time values
in the reference data sets. If both is present the optimizer will
default to the non-inf type fitting if the ‘inf’ timestamp is not
set in the very row of the data set.






Time format

[placeholder]


	posix


	integer counting seconds since 1.1.1970 UTC


	also negative possible, seconds before 1970






	Datetime


	which datetime formats


	how in excel/csv











File format

Their are two data types that are supported:



	plain text files, (typical file extensions are ‘.txt’ or ‘.csv’)


	excel files (.xlsx)







The plain text files are required to be in a specific standard to be correctly
interpreted by the framework.
Besides the general structure introduced in the previous section we require the
headers to be named exactly the same as the compartments in the model.
This is necessary to match them without any potential misinterpretation.
Any columns which do not have a exact counterpart in the model will be ignored.


Plain text files

Every data sets needs to contain a header defining the names of the columns
which are compared to the model compartments.
The names of the compartment are required to be separated by the chosen
delimiter (default `','`)

An example of such a file can be found in the GitHub
Repository [https://github.com/465b/nemf/blob/master/example_files/NPZD_oscillation_on_1990.csv]

The headers has some flexibility how it is defined.
The line may start with a comment symbol (default: “#’)

# Datetime, A, B, [...]





Leading and trailing white spaces in a name are ignored.
Hence,

Datetime,A,B = Datetime, A, B





It is also possible to write the name inside of quotation marks. This is
typically used to mark character strings.
Hence,

"Datetime","A","B" = 'Datetime','A','B' = Datetime, A, B






Note

If quotation marks are used, the names are parsed literally.
As a result of that, leading and trailing whitespaces are no longer ignored.



Generally, it is assumed that the names of the column are defined in the in the
very first row of the document.

1 Datetime, A, B
2 t0,A(t0),B(t0)





If this is not the case, i.e. the file is formatted something like this,

Some additional information about the file and its origin
before the data column headers are parsed
[Data]





the framework might not know how to interpret it.
There are two option how to deal with this.
We recommend using the following format to avoid this problem.


	Use the comment mark (#) for the non-header lines of the data while NO
comment mark is used for the column headers. I.e:

This will work,

# Some additional information about the file and its origin
# before the data column headers are parsed
Datetime, A, B
[...]





this will NOT work

# Some additional information about the file and its origin
# before the data column headers are parsed
# Datetime, A, B
[...]





while THIS will also work.

# Datetime, A, B
[...]







	Alternatively, the load_ref_data() method has the option to
“skip_header= “.
However, this requires a manual re-import of the data and is not recommended.

model = nemf.load_model('path/to/model.yml')
model.load_ref_data('path/to/reference/data.csv',skip_header=5)












Excel files
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API reference


Importing Model


	
nemf.load_model(model_path, ref_data_path=None)

	Loads a model by reading its model configuration from from file


	Parameters

	
	model_path (string) – path to yaml file containing the model


	ref_data_path (string (optional)) – path to file, plain text or xls(x), containing reference data to the
model.
See: https://nemf.readthedocs.io/en/latest/README_reference_data.html






	Returns

	model – class objects that contains the model



	Return type

	nemf_model class












Model Functions


	
class nemf.models.model_class(model_path, ref_data_path=None)

	
	
load_reference_data(ref_data_path=None, **kwargs)

	Loads reference data used in model optimization from file

Either, the path to the reference data is provided in the yaml
configuration file or passed to this function.
Latter overwrites the path in the configuration file.


	Parameters

	ref_data_path (string (optional)) – path to the file containing the reference data














	
nemf.models.import_interaction_functions(func)

	Adds the functions from ‘func’ to the globals in models


	funclist

	List containing the functions that will be added to globals












Visualizing Model


	
nemf.interaction_graph(model)

	shows a graph/network of all compartments and their interactions








Forcasting Model


	
nemf.forward_model(model, method='RK45', verbose=False, t_eval=None)

	Runs the time integration for a provided model configuration.



	modelmodel_class object

	class object containing the model configuration
and its related methods. See load_configuration



	methodstring, optional

	

Type of solver used for the initial-value problem aka forecasting.
Should be on of:



	‘RK45’ (default): Explicit Runge-Kutta method of order 5(4) [1]_.










The error is controlled assuming accuracy of the fourth-order
method, but steps are taken using the fifth-order accurate
formula (local extrapolation is done). A quartic interpolation
polynomial is used for the dense output [2]_. Can be applied in
the complex domain.





	‘RK23’: Explicit Runge-Kutta method of order 3(2) [3]_. The error
is controlled assuming accuracy of the second-order method, but
steps are taken using the third-order accurate formula (local
extrapolation is done). A cubic Hermite polynomial is used for the
dense output. Can be applied in the complex domain.


	‘DOP853’: Explicit Runge-Kutta method of order 8 [13]_.
Python implementation of the “DOP853” algorithm originally
written in Fortran [14]_. A 7-th order interpolation polynomial
accurate to 7-th order is used for the dense output.
Can be applied in the complex domain.


	‘Radau’: Implicit Runge-Kutta method of the Radau IIA family of
order 5 [4]_. The error is controlled with a third-order accurate
embedded formula. A cubic polynomial which satisfies the
collocation conditions is used for the dense output.


	‘BDF’: Implicit multi-step variable-order (1 to 5) method based
on a backward differentiation formula for the derivative
approximation [5]_. The implementation follows the one described
in [6]_. A quasi-constant step scheme is used and accuracy is
enhanced using the NDF modification. Can be applied in the
complex domain.


	‘LSODA’: Adams/BDF method with automatic stiffness detection and
switching [7]_, [8]_. This is a wrapper of the Fortran solver
from ODEPACK.


Explicit Runge-Kutta methods (‘RK23’, ‘RK45’, ‘DOP853’) should be used












for non-stiff problems and implicit methods (‘Radau’, ‘BDF’) for
stiff problems [9]_. Among Runge-Kutta methods, ‘DOP853’ is recommended
for solving with high precision (low values of rtol and atol).
If not sure, first try to run ‘RK45’. If it makes unusually many
iterations, diverges, or fails, your problem is likely to be stiff and
you should use ‘Radau’ or ‘BDF’. ‘LSODA’ can also be a good universal
choice, but it might be somewhat less convenient to work with as it
wraps old Fortran code.


	verbosebool, optional

	Flag for extra verbosity during runtime



	t_eval1d-array, optional

	contains time stamps in posix time for which a solution shall be
found and returned.






	modelmodel_class object

	class object containing the model configuration, model run results,
and its related methods
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Fitting Model


	
nemf.inverse_model(model, nlp_method='SLSQP', ivp_method='Radau', sample_sets=3, maxiter=1000, seed=137, verbose=False, debug=False)

	Fits the model to data.


Optimizes a set of randomly generated free parameters and returns
their optimized values and the corresponding fit-model and cost-
function output


	modelmodel_class object

	class object containing the model configuration
and its related methods. See load_configuration()



	nlp_methodstring, optional

	Type of solver for the non-linear-programming problem aka fitting.
Should be one of:



	‘trust-constr’


	‘SLSQP’


	‘L-BFGS-B’


	‘TNC


	‘Powell’








	For problems with constraints use one of:

	
	‘trust-constr’


	‘SLSQP’










	ivp_methodstring, optional

	
Type of solver used for the initial-value problem aka forecasting.
Should be on of:





	
	‘Radau’ (default):

	
Implicit Runge-Kutta method of the Radau IIA family





	‘RK45’: Explicit Runge-Kutta method of order 5(4) [1]_.










	‘RK23’: Explicit Runge-Kutta method of order 3(2) [3]_.


	‘DOP853’: Explicit Runge-Kutta method of order 8 [13]_.


	‘BDF’: Implicit multi-step variable-order (1 to 5) method


	‘LSODA’: Adams/BDF method with automatic stiffness detection


Explicit Runge-Kutta methods (‘RK23’, ‘RK45’, ‘DOP853’) should be used












for non-stiff problems and implicit methods (‘Radau’, ‘BDF’) for
stiff problems [9]_. Among Runge-Kutta methods, ‘DOP853’ is recommended
for solving with high precision (low values of rtol and atol).
If not sure, first try to run ‘RK45’. If it makes unusually many
iterations, diverges, or fails, your problem is likely to be stiff and
you should use ‘Radau’ or ‘BDF’. ‘LSODA’ can also be a good universal
choice, but it might be somewhat less convenient to work with as it
wraps old Fortran code.


	sample_setspositive integer, optional

	Amount of randomly generated sample sets used as initial free
parameters



	maxiterpositive integer, optional

	Maximal amount of iterations allowed in the gradient descent
algorithm.



	seedpositive integer, optional

	Initializes the random number generator. Used to recreate the
same set of pseudo-random numbers. Helpfull when debugging.



	verboseboo, optional

	Flag for extra verbosity during runtime






	modelmodel_class object

	class object containing the model configuration,
model run results (parameters, model, prediction, cost),
and its related methods





Bound-Constrained minimization




Method L-BFGS-B uses the L-BFGS-B
algorithm [B6], [B7] for bound constrained minimization.

Method Powell is a modification
of Powell’s method [B3], [B4] which is a conjugate direction
method. It performs sequential one-dimensional minimizations along
each vector of the directions set (direc field in options and
info), which is updated at each iteration of the main
minimization loop. The function need not be differentiable, and no
derivatives are taken. If bounds are not provided, then an
unbounded line search will be used. If bounds are provided and
the initial guess is within the bounds, then every function
evaluation throughout the minimization procedure will be within
the bounds. If bounds are provided, the initial guess is outside
the bounds, and direc is full rank (default has full rank), then
some function evaluations during the first iteration may be
outside the bounds, but every function evaluation after the first
iteration will be within the bounds. If direc is not full rank,
then some parameters may not be optimized and the solution is not
guaranteed to be within the bounds.


Method TNC uses a truncated Newton




algorithm [B5], [B8] to minimize a function with variables subject
to bounds. This algorithm uses gradient information; it is also
called Newton Conjugate-Gradient. It differs from the Newton-CG
method described above as it wraps a C implementation and allows
each variable to be given upper and lower bounds.


Constrained Minimization




Method SLSQP uses Sequential
Least SQuares Programming to minimize a function of several
variables with any combination of bounds, equality and inequality
constraints. The method wraps the SLSQP Optimization subroutine
originally implemented by Dieter Kraft [B12]. Note that the
wrapper handles infinite values in bounds by converting them into
large floating values.
Method trust-constr is a
trust-region algorithm for constrained optimization. It swiches
between two implementations depending on the problem definition.
It is the most versatile constrained minimization algorithm
implemented in SciPy and the most appropriate for large-scale problems.
For equality constrained problems it is an implementation of Byrd-Omojokun
Trust-Region SQP method described in [B17] and in [B5], p. 549. When
inequality constraints  are imposed as well, it swiches to the trust-region
interior point  method described in [B16]. This interior point algorithm,
in turn, solves inequality constraints by introducing slack variables
and solving a sequence of equality-constrained barrier problems
for progressively smaller values of the barrier parameter.
The previously described equality constrained SQP method is
used to solve the subproblems with increasing levels of accuracy
as the iterate gets closer to a solution.


The available options are:



	
	‘RK45’ (default): Explicit Runge-Kutta method of order 5(4) [1]_.

	The error is controlled assuming accuracy of the fourth-order
method, but steps are taken using the fifth-order accurate
formula (local extrapolation is done). A quartic interpolation
polynomial is used for the dense output [2]_. Can be applied in
the complex domain.







	
	‘RK23’: Explicit Runge-Kutta method of order 3(2) [3]_. The error

	is controlled assuming accuracy of the second-order method, but
steps are taken using the third-order accurate formula (local
extrapolation is done). A cubic Hermite polynomial is used for the
dense output. Can be applied in the complex domain.







	
	‘DOP853’: Explicit Runge-Kutta method of order 8 [13]_.

	Python implementation of the “DOP853” algorithm originally
written in Fortran [14]_. A 7-th order interpolation polynomial
accurate to 7-th order is used for the dense output.
Can be applied in the complex domain.







	
	‘Radau’: Implicit Runge-Kutta method of the Radau IIA family of

	order 5 [4]_. The error is controlled with a third-order accurate
embedded formula. A cubic polynomial which satisfies the
collocation conditions is used for the dense output.







	
	‘BDF’: Implicit multi-step variable-order (1 to 5) method based

	on a backward differentiation formula for the derivative
approximation [5]_. The implementation follows the one described
in [6]_. A quasi-constant step scheme is used and accuracy is
enhanced using the NDF modification. Can be applied in the
complex domain.







	
	‘LSODA’: Adams/BDF method with automatic stiffness detection and

	switching [7]_, [8]_. This is a wrapper of the Fortran solver
from ODEPACK.












Explicit Runge-Kutta methods (‘RK23’, ‘RK45’, ‘DOP853’) should be used
for non-stiff problems and implicit methods (‘Radau’, ‘BDF’) for
stiff problems [9]_. Among Runge-Kutta methods, ‘DOP853’ is recommended
for solving with high precision (low values of rtol and atol).
If not sure, first try to run ‘RK45’. If it makes unusually many
iterations, diverges, or fails, your problem is likely to be stiff and
you should use ‘Radau’ or ‘BDF’. ‘LSODA’ can also be a good universal
choice, but it might be somewhat less convenient to work with as it
wraps old Fortran code.
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Visualizing Results


	
nemf.output_summary(model)

	reads the data saved in the model class and depending on this data
chooses a visualization method with the help of draw_output_summary
to present the results










Interaction Functions

Here a list of all currently implemented interaction functions is presented.
These can be used in the YAML model configuration to describe interactions
between to compartments.


Note

The compartments are referenced via indices in the implementation of the
interaction functions.
This is simply an implementation detail.
The user can (and should) use the compartment names when referencing them in
the YAML configuration file.
The framework handles the mapping of the names to the corresponding indeces
internally.




	
nemf.interaction_functions.excretion(X, idx_A, idx_B, coefficient)

	linear response with respect to origin/prey compartment


	Parameters

	
	X (np.array) – containing the current state of the contained quantity of each
compartment


	idx_A (integer) – index of the element representing the destination/predator compartment


	idx_B (integer) – index of the element representing the origin/pray compartment


	coefficient (float) – governs the slope of the linear response






	Returns

	df – change in the origin and destitnation compartment. Calculated by
coefficient*origin_compartment



	Return type

	float










	
nemf.interaction_functions.exudation(X, idx_A, idx_B, coefficient)

	linear response with respect to origin/prey compartment


	Parameters

	
	X (np.array) – containing the current state of the contained quantity of each
compartment


	idx_A (integer) – index of the element representing the destination/predator compartment


	idx_B (integer) – index of the element representing the origin/pray compartment


	coefficient (float) – governs the slope of the linear response






	Returns

	df – change in the origin and destitnation compartment. Calculated by
coefficient*origin_compartment



	Return type

	float










	
nemf.interaction_functions.holling_type_0(X, idx_A, coefficient)

	linear response with respect to destination/predator compartment

For examples see:
Examples [https://gist.github.com/465b/cce390f58d64d70613a593c8038d4dc6]


	Parameters

	
	X (np.array) – containing the current state of the contained quantity of each
compartment


	idx_A (integer) – index of the element representing the destination/predator compartment


	idx_B (integer) – index of the element representing the origin/pray compartment


	coefficient (float) – governs the slope of the linear response






	Returns

	df – change in the origin and destitnation compartment. Calculated by
coefficient*destination_compartment



	Return type

	float










	
nemf.interaction_functions.holling_type_I(X, idx_A, idx_B, coefficient)

	
	linear response with respect to both origin/pray and

	destination/predator compartment.





For examples see:
Examples [https://gist.github.com/465b/cce390f58d64d70613a593c8038d4dc6]


	Parameters

	
	X (np.array) – containing the current state of the contained quantity of each
compartment


	idx_A (integer) – index of the element representing the destination/predator compartment


	idx_B (integer) – index of the element representing the origin/pray compartment


	coefficient (float) – governs the slope of the linear response






	Returns

	df – change in the origin and destitnation compartment. Calculated by
coefficient * origin_compartment * destination_compartment



	Return type

	float










	
nemf.interaction_functions.holling_type_II(X, idx_A, idx_B, food_processing_time, hunting_rate)

	
	non-linear response with respect to origin/pray with linear response

	with respect to destination/predator compartment





The response with respect to the origin compartment ‘B’ is approximately
linear for small ‘B’ and converges towards an upper limit governed by the
‘food_processing_time’ for large ‘B’.
For examples see:
Examples [https://gist.github.com/465b/cce390f58d64d70613a593c8038d4dc6]


	Parameters

	
	X (np.array) – containing the current state of the contained quantity of each
compartment


	idx_A (integer) – index of the element representing the destination/predator compartment


	idx_B (integer) – index of the element representing the origin/pray compartment


	coefficient (float) – governs the slope of the linear response






	Returns

	df – change in the origin and destitnation compartment. Calculated by
consumption_rate = ((hunting_rate * origin_compartment) /
(1 + hunting_rate * food_processing_time * origin_compartment)) *
destination_compartment



	Return type

	float










	
nemf.interaction_functions.holling_type_III(X, idx_A, idx_B, saturation_rate, consumption_rate_limit)

	
	non-linear response with respect to origin/pray with linear response

	with respect to destination/predator compartment





The response with respect to the origin compartment ‘B’ is approximately
quadratic for small ‘B’ and converges towards an upper limit governed by the
‘food_processing_time’ for large ‘B’.
For examples see:
Examples [https://gist.github.com/465b/cce390f58d64d70613a593c8038d4dc6]


	Parameters

	
	X (np.array) – containing the current state of the contained quantity of each
compartment


	idx_A (integer) – index of the element representing the destination/predator compartment


	idx_B (integer) – index of the element representing the origin/pray compartment


	saturation_rate (float) – first parameter of the interaction.
governs the slope of the non lineare response for small pray
populations.


	consumption_rate_limit (float) – second parameter of the interaction.
governs the upper limit of the response.






	Returns

	df – change in the origin and destitnation compartment. Calculated by
consumption_rate = ((consumption_rate_limit * saturation_rate * B**2)/
(consumption_rate_limit + (saturation_rate*B**2)))*A



	Return type

	float










	
nemf.interaction_functions.inverse_type_0(X, idx_A, idx_B, coefficient)

	linear response with respect to origin/prey compartment


	Parameters

	
	X (np.array) – containing the current state of the contained quantity of each
compartment


	idx_A (integer) – index of the element representing the destination/predator compartment


	idx_B (integer) – index of the element representing the origin/pray compartment


	coefficient (float) – governs the slope of the linear response






	Returns

	df – change in the origin and destitnation compartment. Calculated by
coefficient*origin_compartment



	Return type

	float










	
nemf.interaction_functions.linear_mortality(X, idx_A, idx_B, coefficient)

	linear response with respect to origin/prey compartment


	Parameters

	
	X (np.array) – containing the current state of the contained quantity of each
compartment


	idx_A (integer) – index of the element representing the destination/predator compartment


	idx_B (integer) – index of the element representing the origin/pray compartment


	coefficient (float) – governs the slope of the linear response






	Returns

	df – change in the origin and destitnation compartment. Calculated by
coefficient*origin_compartment



	Return type

	float










	
nemf.interaction_functions.nutrient_limited_growth(X, idx_A, idx_B, growth_rate, half_saturation)

	non-linear response with respect to destination/predator compartment

Similar to holling_type_II and is a reparameterization of holling II.
The response with respect to the origin compartment ‘B’ is approximately
linear for small ‘B’ and converges towards an upper limit governed by the
‘growth_rate’ for large ‘B’.
For examples see:
Examples [https://gist.github.com/465b/cce390f58d64d70613a593c8038d4dc6]


	Parameters

	
	X (np.array) – containing the current state of the contained quantity of each
compartment


	idx_A (integer) – index of the element representing the destination/predator compartment


	idx_B (integer) – index of the element representing the origin/pray compartment


	growth_rate (float) – first parameter of the interaction.
governs the upper limit of the response.


	half_saturation (float) – second parameter of the interaction.
governs the slope of the response.






	Returns

	df – change in the origin and destitnation compartment. Calculated by
consumption_rate = ((hunting_rate * origin_compartment) / (1 +
hunting_rate * food_processing_time * origin_compartment)) *
destination_compartment



	Return type

	float










	
nemf.interaction_functions.remineralisation(X, idx_A, idx_B, coefficient)

	
	linear response with respect to both origin/pray and

	destination/predator compartment.





For examples see:
Examples [https://gist.github.com/465b/cce390f58d64d70613a593c8038d4dc6]


	Parameters

	
	X (np.array) – containing the current state of the contained quantity of each
compartment


	idx_A (integer) – index of the element representing the destination/predator compartment


	idx_B (integer) – index of the element representing the origin/pray compartment


	coefficient (float) – governs the slope of the linear response






	Returns

	df – change in the origin and destitnation compartment. Calculated by
coefficient * origin_compartment * destination_compartment



	Return type

	float










	
nemf.interaction_functions.sloppy_feeding(holling_type, coeff, *args)

	calls holling_type functions with an extra “efficiency” coefficient.
the inverse of the efficiency is then supposed to flow into
a different compartment






	
nemf.interaction_functions.stress_dependant_exudation(X, idx_A, idx_B, coefficient)

	
	linear response with respect to both origin/pray and

	destination/predator compartment.





For examples see:
Examples [https://gist.github.com/465b/cce390f58d64d70613a593c8038d4dc6]


	Parameters

	
	X (np.array) – containing the current state of the contained quantity of each
compartment


	idx_A (integer) – index of the element representing the destination/predator compartment


	idx_B (integer) – index of the element representing the origin/pray compartment


	coefficient (float) – governs the slope of the linear response






	Returns

	df – change in the origin and destitnation compartment. Calculated by
coefficient * origin_compartment * destination_compartment



	Return type

	float
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Releases


v0.3.3 (June 2020)

This is a minor release introducing new options for both non-linear-programming
aka fitting solvers and initial-value-problem aka forecasting solvers. It also
brings some bugfixes and consistency changes as well as additional
documentation.




New Non-Linear-Programming (NLP) solvers

Previously, only the two solvers that worked in all cases (bounded,
constraint & bounded) were properly implemented.

However, both ‘SLSQP’ and ‘trust-constr’ showed to be sometimes outperformed
by other solvers. ‘trust-constr’ showed to be much slower, and ‘SLSQP’ while
fast sometimes exited without actually optimizing the result.
For that reason we added additional solves which are available in the case
where no constraints are present.

The full list of solvers is now:* ‘SLSQP’
* ‘trust-constr’
* ‘L-BFGS-B’
* ‘TNC’
* ‘Powell’
where the bold ones are newly implemented.
To distinguish the NLP and IVP solvers, the key used to pass them to the
inverse_model has been changed from ‘method’ to ‘nlp_method’.
For more detail, see the API references




New Initial-Value-Problem (IVP) solvers

Previously, the IVP solver was not free for the user to change and always
defaulted to de ‘RK45’ solver.
However, the ‘RK45’ showed to have some issues.
In some cases it got stuck, mostly because the numerical errors resulted in
negative compartment values even if the ODE would not allow it.
Hence, the error increased over time drastically and the output,
if calculated in a reasonable time were unusable.

Other solvers showed to performed better in these circumstances.
The default solver is now ‘Radau’. While it is generally slower then the
‘RK45’ it showed to perform better in the above described circumstances.

The full list of IVP solvers is now:
* ‘Radau’ (default)
* ‘RK45’
* ‘RK23’
* ‘DOP853’
* ‘BDF’
* ‘LSODA’
To distinguish the NLP and IVP solvers, the key used to pass them is called
‘ivp_method’.
For more detail, see the API references




Bug fixed and consistency changes


Changes


	Different verbosity options can now be used for ‘trust-constr’, providing
more information during runtime. See API references for more
details.


	Changed the output of the load_reference_data() function. Previously it
returned the output directly. Hence, the user had to pass it back to the
model. Because there is (currently) no application to use it without passing
it back to the model it does this now automatically.







Bugs


	load_model() did not allow to not pass a reference data path as presented
in the examples. This is now possible.


	load_reference_data() did not correctly accept keyword arguments but only
non-keyword ones. This as an error as all optional ones are kwargs.







Minor internal changes


	internal: In some cases the reference data sets have been referred to as
‘fit data’ because it has been at some point during development used
exclusively for fitting. Because is does not need to be used to fit anymore
but can also be used to plot, we now call it reference data everywhere.


	internal: The data type used to describe the bounds of parameters during the
optimization process was inconsistent. The compartments used list while
the interactions used sets. This was not also inconsistent but also caused
issues as some solvers did not parse them correctly.
Now, all bounds are passed as lists.









v0.3.2 (June 2020)

This is a minor release introducing the new name “nemf” of the framework as
well as a improved reference data import and some changes in the plotting of
the framework output.


New name

The framework has been renamed General Ecosystem Modelling
Framework (GEMF) to Network-based Ecosystem
Modelling Framework (NEMF).

While it still remains a general modelling framework, the name change shall
emphasis the core distinguishing concept that distinguishes it from other
other modelling frameworks.
Additionally, the network concept is key concept that users need to work with
and keep in mind while using the framework, while the general-aspekt fades
into the background once the framework has been chosen.




Better reference data input


	Previously reference data had to be provided for all modelled compartments.
It is now possible to provide reference data for only a subset of the
compartment.


	Datasets must now contain a header that contains the names of the columns
which will be compared to the compartment names.


	Data that is present in the reference data set which does not correspond
to modelled compartment will now be simply ignored and does not need be
removed manually. However, this also requires the header names to match
the compartment names exactly.






	New feature of “Datetime” timestamps for reference data in excel files.
“Datetimes” (i.e. ‘18.09.1783 12:34’) are automatically transformed into
the default POSIX timestamp (seconds before/after 1.1.1970).







Plotting changes


	Major: Output summary plots now automatically use scatter plots instead
of line plots if the amount of data points is low.
This has two main reasons:


	Plots with only one point are now also proprly drawn.
(Lines require two points, and are drawn empty if only one is present)


	Avoids implying a linear behavior between two distant points, which can
confuse the user while interpret
ing the plot.






	Minor: Implemented a new color selection scheme when plotting. This
avoids that colors are reused when many lines are present. Additionally, it
makes sure that the reference data and model output use the same colors,
even if only a subset of the model compartments is present in the refer
data.







Other changes


	The interaction function nutrition_limited_growth has been renamed to
nutrient_limited_growth.


	load_model now also allows the import of reference data.


	Many new descriptions and comments have been added to the documentation









v0.3.1 (June 2020)

This is a minor release introducing a user-friendly option to rename interaction
functions as well as constraints for optimized parameters.
An initial documentation has been drafted and is hosted on
readthedocs.io [https://nemf.readthedocs.io/en/latest/].


Importing and renaming interaction functions


	init_alternative_interaction_names( )This is called when ever a new model i initialized.
It checks if alternative names for an existing interaction were declared in the
yaml configuration file.
For details check the
docs [https://nemf.readthedocs.io/en/latest/README_interaction_functions.html].


	import_interaction_functions( )This can be called in the execution file by the user to import user-defined or
renamed interaction functions.
For details check the
docs [https://nemf.readthedocs.io/en/latest/README_interaction_functions.html].




The previous version of renaming interaction functions was to declare the
alternative names in the execution file. However, this did not work consistently
in all execution environments. Therefore, we now introduce to dedicated
functions to rename and/or import interaction functions.




Importing constraints


	Added import_constraints( )Reads constraints from an python file and adds them to the model.
For details check the
docs [https://nemf.readthedocs.io/en/latest/README_interaction_functions.html].




In some circumstances, the parameter fitted in an optimization run are not
independent of each other. I.e. one might want to enforce that sum of two
parameters is always equal to one. Such a behavior is enforced through
‘constraints’.




Documentation


	Hosted the current drafts of the documentation on readthedocs.io [https://nemf.readthedocs.io/en/latest/].


	Documentation created via sphinx


	Added automated API reference creation based on docstrings via autodoc









v0.3.0 (May 2020)

This is a major release introducing scipy’s integration and optimization
routines into the framework.


Replaced reference data import


	Removed the old reference data input which only allowed for simple
steady-state fitting


	New version requires the data to be stored in a separate file and imported
either by passing the link in the yaml file or when calling the inverse_method
routine. The latter overwrites the path given in the yaml file.







New forward modelling


	Replaced the self written time_integration routine with
scipy.integrate.solve_ivp.


	Adjusted forward_model and plotting routines accordingly and introduced
supporting functions.







New inverse modelling


	Replaced the self written gradient_descent method with
scipy.optimize.minimize.


	Adjusted inverse_model and plotting routines accordingly and introduced
supporting functions.







Visualization


	Added initial_guess plotting function to visualize the model output before
any optimization has been applied.
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