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NEMF

NEMF is a ecosystem modelling framework written in python. It is designed to offer an easy to use method for
modelling ecosystems with low- to intermediate complexity. It consists of three conceptual parts:

1. Network-based model description

2. Forward modelling

3. Inverse modelling

(For details see Introductory notes.)

The framework offers the functionality to handle non-equilibrium, non-linear interactions. For the typical use-cases,
user do not need to write any code but only provide a model configuration.

The range of use-cases can easily be extended with simple user-written functions without needing to change any of
the framework code. NEMF offers an easy to use method to fit any model parameter such that the model mimics the
studied system.

For simplicity, the current version of the framework is limited to non-spatially resolved models (box-models).

For a brief introduction to the ideas behind this library, you can read the introductory notes. A more detailed description
can be found in the paper. Visit the installation page to see how you can download the package. You can browse the
examples to see what you can do with NEMF. A more detailed description of the parts the library can be found in the
manual, while the code is documented in the API reference section.

To see the code, please visit the github repository. To report a bug, please raise an “Issue” in githubs issue tracker.
Please feel free to contact laurin.steidle@uni-hamburg.de with general issues (i.e. if the installation fails).
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CHAPTER 1

An introduction to NEMF

The network-based ecosystem modelling framework (NEMF) is a python software tool to model ecosystems. From a
modelling perspective, it consists of three conceptual parts:

1. Network-based model description: Each model is described by a network. A network consists of two com-
ponents. Nodes, which describe ecosystem compartments, and edges, which link two compartments together
through some interaction.

2. Forward modelling: A model is defined by a set of differential equations implicitly defined by the network
structure. Theses differential equations can be solved numerically for a certain initial state. Hence, providing
forecasts for how the model behave over time.

3. Inverse modelling: Fitting of model forecast to to observational or other reference data, by varying model
parameters.

It aims to keep the configuration complexity minimal for the user such that it can be quickly learned and applied for
i.e. rapid prototyping of model ideas. To keep configuration and computational complexity low it can only applied to
non-spatially-resolved, also known as box-models.

1.1 Network and Forward

We will now go over the the first two parts of the model with the help of a simple NPZD type model. NPZD stands for
the Nutrient- Phytoplankton- Zooplanktion-Detritus model, which is a simple well studied marine ecosystem model.
The details of it are not important here, as it is solely used as placeholder for any sort of ecosystem model.

To calculate the forecast of a model we run the following few lines of code:

import nemf
model_path = 'emplary_npzd_model.yml'
model = nemf.load_model(model_path)
nemf.interaction_graph(model)
output_forward = nemf.forward_model(model)
nemf.output_summary(output_forward)

Let’s go through the lines one by one to see what happened:

3
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1. First we imported the nemf python library.

import nemf

This tells python that we want to us this library and because not stated otherwise that we will address it as nemf

2. We tell the nemf library which model we want to use.

model_path = 'exemplary_npzd_model.yml'
model = nemf.load_model(model_path)

Models are typically defined in an extra file. This file contains the description of the model in a humon-readable
standard called YAML. Hence, the file extension .yml More on the yml standard and how it is used to define
models can be found here.

3. We visualize the network defined in the model configuration by

nemf.interaction_graph(model)

which returns the following plot:

NEMF offers the option to draw the network defined in the model configuration. This is helps to catch errors that
might have happened during the configuration and gives a nice overview over the model. Each node represents a
compartment in the model, i.e. a population or a chemical quantity. The arrows between them show what flows
from one compartment to another while the label on the arrow describes how it does that.

4. We solve the differential equations underlying the model numerically with:

output_forward = nemf.forward_model(model)

The network implicitly defines a set of differential equation that couples the compartments to each other, through
the interactions between them. The framework solves these differential equations to give a forecast how the
model is expected to evolve over time. This is often also called ‘time evolution’.

5. The result of the time evolution are visualized by calling

nemf.output_summary(output_forward)

which generates the following plot:

Each line represents one compartment and how its associated quantity (i.e. a population size) changes over time.

4 Chapter 1. An introduction to NEMF
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1.2 Model description via YAML configuration

In the example above, we assumed that a model (‘exemplary_npzd_model’) has already been defined. If we want to
construct a new model, we need to write our own configuration file.

There are three major parts of the configuration file:

1. Compartments contain a list of all model compartments, like species population pools or nutrition pools.

2. Interactions contains a list of all interactions between compartments, like what eats what and what happens
when it dies

3. Configuration contains a list of technical details that decide the framework behavior during the forecast and
fitting.

The configuration file is written in the YAML standard.

It consists of what is called key-value pairs. Each key is associated with a value. These values can also be lists which
are indicated by leading “-“, like bullet points. You can find details about the YAML standard on http://yaml.org/.
Note that the YAML website is itself perfectly valid yaml.

A simple example for the compartment section looks like this:

compartment: # header of the compartment section
A: # name of compartment
value: 1.0 # initial value of the compartment

B:
value: 2.0

..

..

Interactions are defined similarly:

A:B: # flow from B to A (predator:prey)
- fkt: grazing # type of interaction
- parameters: # parameters used for the interaction
- 1 # i.e. hunting rate
- 2 # food processing time

B:A
- fkt: natural mortality
- parameters:

- 0.01 # natural mortality rate

A description of how this works in detail can be found in the YAML section of the manual.

1.3 Inverse modelling

So far, we covered the first two aspect; the network-based approach and the forward modelling. We can also fit
unknown, or imprecisely known parameters such that the forecast resembles a provided data set as closely as possible.

We can achieve this with the inverse_model method.

import nemf
model_path = 'path/to/the/yaml/file/presented/above/example.yml'
reference_data_path = 'path/to/the/data/file/representing/the/model_ref.csv'
model = nemf.load_model(model_path,reference_data_path)
output_inverse = nemf.inverse_model(model)
nemf.output_summary(output_inverse)

6 Chapter 1. An introduction to NEMF
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Most of this code is the same as previously shown. The are only two new lines. The first binds the path of the reference
data file:

reference_data_path = 'path/to/the/data/file/representing/the/model_ref.csv'

This is path is then used when loading the model:

model = nemf.load_model(model_path,reference_data_path)

Hence, making both the model description as well as the reference data available to the framework.

The second new line is:

output_inverse = nemf.inverse_model(model)

Instead of calculating the forecast once as previously shown, the inverse_model now calculates it for different sets of
parameters in such a way that we find the best solution quickly.

However, for this to work we provided some additional information. There are two things we need to provide:

1. Reference data (i.e observational data)

2. Optimized parameters

The reference data is expected do be in a separate file. Details about its format and how it can be imported can be
found in the reference data section of the manual.

The parameters that shall be optimized are selected in the YAML configuration file by adding the ‘optimise’ key and
providing its upper and lower bounds in which the method tries to find the best solution.

compartment: # header of the compartment section
A: # name of compartment
value: 1.0 # initial value of the compartment
optimise:

lower: 0 # lower and
upper: 2 # upper bound during the fitting process

The reference data can either be passed directly when loading the model or alternatively be set in the yaml file as well.

Detail on the configuration of the YAML file can be found in the yaml section of the manual.

The results are then visualized with:

nemf.output_summary(output_inverse)

Which creates the following figure:

1.3.1 Next steps

You have a few options for where to go next. You might first want to learn how to install namf on your machine. Once
that’s done, you can browse the examples to get a broader sense for what kind problems nemf is designed for. You
can read through the manual for a deeper discussion of the different parts of the library and how they are designed.
If you want to know specifics of the nemf functions implementations, you could check out the API reference, which
documents each function and its parameters.

1.3. Inverse modelling 7
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Fig. 1: Visualization of the results of the model fit. The upper figure shows the tested parameter during the fitting
process, while the lower figure shows the “optimally” fitted model.

8 Chapter 1. An introduction to NEMF



CHAPTER 2

Examples

We will present some small examples in full to show what the model can be used for and how.

2.1 Predator-Prey

The probably most famous ecosystem model is the so called “Lotka-Volterra” model. It has been developed in the
1920s and was designed to described the population dynamics of hares and lynxes. It is described by the following set
of equations,

where x and y represent the predator and prey populations, while the remaining variables are constants.

While famous, this minimalistic predator-prey model is not “closed”. Hence, it implicitly depends on external com-
partments, most importantly nutrients for the prey. We present a closed extension of this model, where the predator
dies, is transformed in some form of nutrient and consumed by the prey.

The interaction graph of this model is presented below.

This graph is generated by the NEMF framework base on the following YAML-configuration-file:

# List of all present compartments in the model.
compartment:

Nutrient:
value: 0.1
optimise:

Predator: # name of the compartment
value: 0.1 # initial value of the compartment
optimise: # if the above value shall not be optimized,

#this remains empty
Prey:
value: 0.1
optimise:

(continues on next page)
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(continued from previous page)

# List of all interactions/flows between compartments
interactions:

Prey:Nutrient: # names of the interacting compartments
- fkt: holling_type_I # name of the type of interaction
parameters: # list of parameters required for interaction
- 'Nutrient' # Parameters can also be other compartments
- 2
optimise: # whether or not some of these parameters

# shall be optimized
Predator:Prey:
- fkt: holling_type_I
parameters:
- 'Prey'
- 100

Nutrient:Predator:
- fkt: linear_mortality
parameters:
- Predator
- 1

# list of details for the forward and inverse modelling modules
configuration:

# time evolution / forward modelling
time_evo_max: 100
dt_time_evo: 0.1

You can read more about the YAML configuration file here.

To create the graph and also calculate a forecast/time-evolution of the model we execute the following lines of code:

import nemf

# provide the path of model/system configuration
model_path = 'path/to/the/yaml/file/presented/above/example.yml'

# load the model configuration
model = nemf.load_model(model_path)

# visualise the model configuration to check for errors
nemf.interaction_graph(model)

# for a time evolution of the model call:
output_forward = nemf.forward_model(model)

# the results of the time evolution can be visualized with:
nemf.output_summary(output_forward)

To read more about the functions present in the NEMF framework, take a look at the API references.

This generates both the graph as shown above, and also the following time-evolution of the model:

2.1. Predator-Prey 11
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2.2 NPZD-Model (Nutrient-Phytoplankton-Zooplankton-Detritus)

The simple Predator Prey example presented the fundamentals of the Framework. In the NPZD example used in the
introduction we also presented the inverse- or fitting-capabilities of the framework which we will present now.

The model interaction graph looks like this:

This model is a little more complicated. Hence, the configuration file will also be a little longer.

Note especially how we declare which parameters shall be fitted and the range in which the fitted value shall remain.

# List of all present compartments in the model.
compartment:

N: # name of the compartment
value: 1 # initial value of the compartment
optimise: # if the above value shall not be optimized this remains empty

lower: 1.0e-9 # if not, lower and
upper: 2 # upper constraints must be defined

P:
value: 1 #.20835024e+00

(continues on next page)
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(continued from previous page)

optimise:
lower: 1.0e-9
upper: 2

Z:
value: 1 #8.84333950e-01
optimise:

lower: 1.0e-9
upper: 2

D:
value: 1 # 8.57333742e-01
optimise:

lower: 1.0e-9
upper: 2

# List of all interactions/flows between compartments
interactions:

P:N: # names of the interacting compartments
- fkt: nutrient_limited_growth # name of the type of interaction
parameters: # list of parameters required for interaction
- 'N' # Parameters can also be other compartments
- 0.27
- 0.7
optimise: # whether or not some of these parameters

# shall be optimized
Z:P:
- fkt: holling_type_III
parameters:
- 'P'
- 0.02
- 0.575
optimise:

- parameter_no: 2
lower: 0.015
upper: 0.025

- parameter_no: 3
lower: 0.5
upper: 0.6

D:P:
- fkt: linear_mortality
parameters:
- 'P'
- 0.04
optimise:

D:Z:
- fkt: linear_mortality
parameters:
- 'Z'
- 0.01
optimise:

N:D:
- fkt: remineralisation
parameters:
- 'D'
- 0.148
optimise:

(continues on next page)
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(continued from previous page)

# list of details for the forward and inverse modelling modules
configuration:

# time evolution / forward modelling
time_evo_max: 1000
dt_time_evo: 1

For the framework to fit we also need a date set to be used. It will then try to find a model configuration (in the allowed
constraints) that lies closest to the reference data points.

For our example we use the following data set:

'Datetime','N','P','Z','D'
1.262297670e+09,1.51e-01,3.15e-01,1.74e+00,1.79e+00
1.262297681e+09,7.22e-01,4.97e-01,1.60e+00,1.17e+00
1.262297692e+09,5.23e-01,1.13e+00,1.66e+00,6.69e-01
1.262297703e+09,4.98e-02,9.03e-01,1.94e+00,1.09e+00
1.262297714e+09,2.82e-02,4.97e-01,1.93e+00,1.54e+00
1.262297725e+09,8.95e-02,3.29e-01,1.79e+00,1.79e+00
1.262297736e+09,5.07e-01,3.92e-01,1.64e+00,1.45e+00
1.262297747e+09,7.57e-01,9.44e-01,1.60e+00,6.88e-01
1.262297758e+09,9.99e-02,1.07e+00,1.89e+00,9.35e-01
1.262297769e+09,2.52e-02,5.88e-01,1.95e+00,1.42e+00
1.262297780e+09,5.41e-02,3.58e-01,1.83e+00,1.74e+00
1.262297791e+09,3.04e-01,3.30e-01,1.68e+00,1.67e+00

Read more about the reference data format here.

To tell the framework to perform a fitting-run we execute the following small script. It will also generate the interaction
graph above and will draw a plot presenting the result.

import nemf

# provide the path of model/system configuration
model_path = 'path/to/the/yaml/file/presented/above/example.yml'
reference_data_path = 'path/to/the/data/file/representing/the/model_ref.csv'

# load the model configuration
model = nemf.load_model(model_path,reference_data_path)

# visualise the model configuration to check for errors
nemf.interaction_graph(model)

# for a simple time evolution of the model call:
output_forward = nemf.inverse_model(model)

# the results of the time evolution can be visualized with:
nemf.output_summary(output_forward)

14 Chapter 2. Examples
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which will create the following plot:

In the top you can see the different set tested during the fitting process. The bottom half shows the “fitted” model
time evolution, which represents the frameworks best guess for the parameters. The reference data points are shown
as dashed lines.

2.3 Enzymatic Reaction

[placesholder]

2.3. Enzymatic Reaction 15
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CHAPTER 3

A novel three step, network-based, general ecosystem modeling
framework

Below, you can find the pre-published paper that provides a bigger picture of the framework and its key features.

A novel three step network-based general ecosystem modelling framework

17
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CHAPTER 4

Installation

4.1 On Linux

Python and its package manger (pip) should be preinstalled. Hence, it can simply be installed through:

pip install nemf

4.2 On Windows:

4.2.1 Using pip

If you haven’t installed python already, get the latest python version from here. This also installs pythons integrated
package manager (pip).Then, the following install command can be used in windows powershell:

python -m pip install nemf

4.2.2 Using Anaconda

Alternatively, you can use Anaconda to manage both the python installation and your python packages.

To do so, download and install Anaconda from their homepage

After Anaconda is installed you can use Anaconda Prompt to install the package by executing

conda install nemf

19
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4.3 On Mac

If you haven’t installed python already, get the latest python version from here. Scroll down to get the “macOS 64-bit
installer”

To installs pythons integrated package manager (pip).

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
python get-pip.py

Then, the following install command can be used in the terminal:

python -m pip install nemf

4.3.1 Using Anaconda

Alternatively, you can use Anaconda to manage both the python installation and your python packages.

To do so, download and install Anaconda from their homepage

After Anaconda is installed you can use Anaconda Prompt to install the package by executing

conda install nemf

20 Chapter 4. Installation
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CHAPTER 5

Manual

Manual

5.1 Conceptual overview of library

In the introduction we presented the concepts the user needs know when using the model. We will now take a look at
the concept behind the user interface.

5.1.1 ODE’s and their time evolution

While the user provides a network to the framework, the underlying concept is the set of differential equations that is
created from the network. This differential equation is solved numerically to calculate the model output. Therefore,
we study model by examining the results of the integrated ODE’s.

We will now take a look a very reduced example.

We assume a first-order coupled ODE system of the following form:

Where alpha takes the form of a matrix which elements are functions f of the form:

Here, alpha takes the form:

5.1.2 Fitting

In general, the parameters we might desire to be optimized are elements of u and beta (parameters of f ). In the
following we will refer to them as free parameters x. As stated above they are

All elements of u_{0} and beta are constant in the optimization process. Therefore, we will in the following only
discuss the behavior of the time evolution dependant on the free parameters. Hence, we find a unique solution to the
time evolution for every set of free parameters. We write the time evolution base on a specific set of free parameters
as F(x). Because x is a subset of u and beta, this can also be expressed:

21
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Cost/Loss function

To compare “how close” the system represents the desired system we need to introduce a measure. This measure is
usually referred to as ‘objective function’, but often also called cost- or loss function. For every set of free parameter x
we can calculate a cost function J. J is calculated based on F(x) and F(y), where y represents the set of free parameters
of the desired system. In general y might not exist, i.e. if the network or the matrix alpha is “badly” chosen. J is
calculated by:

F(y) is given to the framework as a set of reference or measurement data points.

The effect of the different free parameters can be examined through a perturbation approach. The free parameters are
perturbed slightly.

Theoretically, we could continue to sample the parameter space of the free parameters in this way or by testing a
homogeneous distribution of free parameters over the sample space. However, this is computationally costly because
it requires the evaluation of a large set of free parameters. Especially for a high dimensional search space, meaning a
large set of observed quantities modelled by the ODE and/or a large set of free parameters, this becomes unfeasible.

Therefore we require a better sampling approach to reduce the computational cost of finding an optimal set of free
parameters.

Gradient Descent

The general idea is to “always walk downhill”. Imagine the cost function field as landscape. The best solution is the
one with the lowest value of J, hence the deepest valley. Therefore, we have a chance to find it when we always walk
downhill. If we want to reach that point quickly, we might chose to take the steepest path downhill. Be aware thought
that going down the a certain downhill path might end up at a different valley. Furthermore, there might be a deeper
valley at the other side of the mountain.

This concept is represented in its simplest form in the so called ‘gradient descent’. Its core idea is that we calculate
a local gradient of the unknown cost function field and always move along the direction of the steepest descent. This
way we find in principle the closest local minima without sampling the whole region but only one path. This drastically
cuts the computational cost.

In its simplest form such a gradient descent is given by

where x^{n+1} is the next tested free parameter set and lambda is the step size, of the gradient of J. The gradient
always points into direction of the steepest ascent. Hence, by going into the opposite direction we are always walking
downhill on the steepest path.

This approach is also used in many machine learning problems and therefore well studied. Its great advantage is that
we only require the field of the cost function J(x,y) to be continuous and differentiable. This enables this approach
to be applicable in many different problems. However, the generality of this approach introduces certain problems
as well. Firstly, it is generally unknown if an ideal solution exists. Secondly, assuming such an ideal solution exists,
it is not guaranteed that the algorithm finds it. Hence, if the best output of the algorithm is still not satisfactory, one
does not know if the studied system does not have a better solution or if the algorithm just didn’t find it. We are blind
walkers on a foggy mountains.

5.2 Overview of the YAML configuration file

The idea of this configuration file is to provide a simple, well structured, easily human-readable configuration of the
full framework. A run of the framework is fully determined by this configuration file. It in This contains the configu-
ration of the interaction network, the resulting ODEs, their time integration, the fitting methods and its configuration
including the reference to the data that shall be used to fit.

22 Chapter 5. Manual
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If you first want to take a look at a rough overview of the library, see introduction. If you would like to get a better
understanding how the library works internally, see manual/concept.

Even a the small NPZD-type model that is presented in the library overview has numerous interactions and many more
parameters and constants. In addition to the configuration of the model, we also need to define what parameters we
want to fit and how. Therefore, the configuration of them can becomes become confusing and we we which need a
clear structure to define them. To avoid loosing track of all these individual things, we store all in one well structured
file. YAML provides a ideal format for this, since it is easily readable by humans as well as machines.

5.2.1 What is defined in the file?

The file contains three sections: Compartments, Interactions, Configuration. Compartments and Interaction are used to
construct the network that is used to construct the set of ODEs. Configuration defines the methods for time integration
and fitting.

Compartments

Compartments are the observed and modelled quantity of the ODE system. In the NPZD model, they are: (N)utritients,
(P)hytoplankton, (Z)ooplankton, (D)etritus. All are counted in a shared currency, i.e. carbon mass.

The relevant information that needs to be defined is:

• name

• initial value (in the time evolution)

• upper and lower bound, if this value shall be fitted

In the YAML format this looks like the following:

compartment: # header of the compartment section
N: # name of compartment
value: 1.0 # initial value of the compartment
optimise:

lower: 0 # lower and
upper: 2 # upper bound during the fitting process

P:
value: 1.0
optimise: null # no fitting required for this compartment

A more detailed description of all the possible options is provided further down.

Interaction

Interactions represent any flow from one compartment to an other. A interaction is described either by a function
(keyword: ‘fkt’) defined in the framework library (see models.py/#interaction_models),or by a user defined function.
The only condition to the function name provided in the yaml file is that has to match the function known to the python
interpreter exactly.

In addition to the name of the compartments and their interaction function, we require the set of parameters used in the
function to be defined. These can either be constants, or compartments. Furthermore, the direction of the flow needs
to be defined (‘sign’).

We can define individual parameters to be fitted. This is done by providing the index of the parameter (i.e.: second
parameter) and its range. Naturally, this does not apply if the selected parameter is a compartment because they are
calculated during the time evolution.

5.2. Overview of the YAML configuration file 23
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A small example of the interaction of between N and P might look like the following:

interactions:
# the functions are automatically multiplied by the value
# of the second compartment
N:P: # name of source:destination of the flow
- fkt: nutrient_limited_growth # function defining the type of flow
parameters:
- 'N' # the first parameter is the current value
- 0.27 # of the 'N' compartment
- 0.7
sign: '-1' # direction of flow (from P to N)
optimise:

- parameter_no: 2 # second parameter (0.27) is optimized
lower: 0.1 # and values in the range of
upper: 0.3 # [0.1,0.3] are allowed to be used

A crucial implementation detail is, that by default, the first named compartment is implicitly passed as an parameter
to the interaction functions. The second compartment needs to be explicitly named.

Configuration

This section of the file contains all technical implementation details of the ODE solver and inverse problem solver.
Find a annotated example below.

# ode solver related details:
time_evo_max: 100
dt_time_evo: 0.1

ode solver related configuration details:

• time_exo_max: Ideally the ode system reached a stable state and stops automatically. If this is not the case it
stops the latest at the ode-model time defined here.

• dt_time_evo defines the step size in ode-model time needed for a net-flux fit model.

5.3 Interaction Functions

A short description what interaction functions are, how they are used and how they are implemented.

5.3.1 General

Compartments in the model are linked through flows. These flows, are characterized through, what we call, interaction
functions. Each interaction function precisely describe the change per time step between two compartments. [ref paper
for details]

The user has to deicide what type of interaction suits best to describe an interaction between to compartments. A
common examples of such types are holling type functional responses. A more simple example might be simple linear
mortality, where a percentage of compartment dies and is transformed into some sort of detritus.

24 Chapter 5. Manual
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5.3.2 Implementation

The framework offers a wide range of typical functional responses to be chosen as an interaction function.

Conceptually

Conceptually a interaction function f is of the form: f(a,b,c, . . . ) -> y where a,b,c are the interaction parameters,
such a natural mortality rate or the amount of predators. y is a scalar representing the change per time step in the
“flow-destination” compartment.

The user has to decide on which function f they want to use to represent a certain interaction, as well as to provide the
function dependent parameter a,b,c . . . This could be for example a linear mortality of the formf(alpha,A) = alpha *
A where alpha represents a mortality rate, expressed in units of (unit of A)/time.

Technically

For technical reasons this is implemented slightly different. Each interaction function also takes the a list of all
compartments, including the name or index of the origin and destination compartment. Hence, the previous function
signature ends up looking like this:

f(X,[ i_origin,j_destination ],a,b,c, . . . ) -> y,

where X represents the array containing all compartments, and i and j represent the corresponding indices of the origin
and destination compartments.

5.3.3 Units

In Ecology, or in Biology in general there are often many different units used to describe similar things. Therefore,
it can sometimes be difficult to gather all the necessary information in a consistent form to use them in interaction
functions.

Particular attention is therefore required when creating the interaction functions, as any wrongly interpreted or trans-
formed unit may render the model invalid.

In general, the unit of an interaction function, as for a compartment, are arbitrary. It is up for the user to decide what
kind of unit they may like to use to represent their model. However, this design choice has to be consistent in the entire
model.

As the interaction functions represent changes in model compartment over time, they need to be expressed as a rate of
the same unit as the corresponding compartment that they are summed up with.

I.e.: Assume we wish to represent the flow between two compartments A and B. Compartment B is described in units
of gram. If we wish to describe a flow from compartment A to compartment B, this flow needs also to be expressed in
units of gram as it is effectively summed up with the quantity in compartment B.

We strongly recommend, that when designing an interaction function, a sanity check is performed to verify that all
units used add up to the necessary one. I.e.: In a simple example the flow from A to B might be represented by a linear
function f_AB of the form:f_AB = alpha * A

Because f_AB is added to B for every time step dt, f_AB needs to take the form of a rate. If unit_B is the unit of the
compartment B and the time steps are expressed in seconds than f_AB needs to add up to the unit unit_B/s. Hence,
alpha needs to be in the unit 1/s. Otherwise the interaction is invalid, and with it the resulting model.

In general compartments might have different units. However, to keep the models simple and avoid further confusion
in the choice of unit we designed the framework ins such a way that all compartments need to share a common unit.
An example of such a shared unit might be carbon mass in kg, in contrast to a wet weight of a certain species.

5.3. Interaction Functions 25



NEMF

5.3.4 Renaming or providing user-defined interaction functions

Even a simple model can contain many different interactions. However, often many of those interaction share the
same underlying behavior. I.e. a natural mortality might scale linearly with the total population just as a exudation
process might scale linearly as well. For model simplicity we recommend using the same function to represent these
interactions. Nevertheless, it might be helpful to distinguish the processes with different names. This is especially
helpful when drawing a larger model as a network, as it helps to identify the actual processes one wants to describe.

For this reason, the model allows to rename existing interaction functions easily by the user. This can be achieved by
two different ways:

• The first option is to define a list of the alternative names in the yaml configuration file. An example of this
might look like:

configuration:
[...]
alternative_interaction_names:

'alternative_name_one': 'existing_function'
'alternative_name_two': 'existing_function'

• The second option is to define them in the python script that is executed to run the model. In that case the newly
written or renamed functions need to be past to the function import_interaction_functions([func1,func2,. . . ])

To give an example:

– In the case of renaming a existing function

import nemf
alternative_name_one = existing_function
alternative_name_two = existing_function

nemf.model.import_interaction_functions([alternative_name_one,alternative_
→˓name_two])

– When a new interaction function is written, it has to use the same signature as the existing ones. See
interaction functions code documentation

Currently something like this would be expected:

def new_function(X, ii, jj, args):
[...] # calculates the changes per time step
return df

import nemf
nemf.model.import_interaction_functions([new_function])

5.4 Reference Data

5.4.1 Why?

A major part of the NEMF framework is its capability to inverse model or fit a designed model output to data. These
data sets might for example be measurements take in the field. They could also be some sort of expected behavior by
the modeler. I.e. something like: “if my assumptions are correct, I expect this to converge to twice the size of the other
compartment” However they were created, the user needs to provide them somehow to the framework. The framework
expects the data in a standardized form. This ensures that the data is interpreted correctly while avoiding tedious data
import configurations by the user,
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5.4.2 Format

The format required is sometimes referred to as the “tidy-data” format. We expect rows to be ‘observations’ of the
system. The columns represent the compartments in the model.

5.4.3 Example

Assume that A & B are names of two compartments in the model. Further, assume that t_i is the time at which the i’th
observation took place. A(t_i) represents the value of the compartment A at the specific moment in time.

A data set containing several observations may then look like the following table:

time A B
t_1 A(t_1) B(t_1)
t_2 A(t_2) B(t_2)
t_3 A(t_3) B(t_3)

An other potential outcome is that the desired state of the model is a steady-state. Meaning, that the described com-
partment is expected to converge to a certain value. In that case the we expect that the compartment will reach the
steady-state value at t=infinity. Such situation is expected to be described by

time A B
inf A(inf) B(inf)

The framework does not specifically enforce a convergence as this behaviors is governed by the model. Enforcing to
only consider steady-states in the optimization process is currently no possible in the framework. This means that the
model might reach the desired values A(inf) & B(inf) at the end of the time evolution while the model has not (yet)
converged. To avoid such an output it is possible to specify the the steady-state solution repeatably as in the first table.
However, the values for A and B remain the same for all time steps. This suppress non-steady-states solutions in the
model optimization.

Note: It is not possible to mix the ‘inf’ timestamp with date-time values in the reference data sets. If both is present
the optimizer will default to the non-inf type fitting if the ‘inf’ timestamp is not set in the very row of the data set.

5.4.4 Time format

[placeholder]

• posix

– integer counting seconds since 1.1.1970 UTC

– also negative possible, seconds before 1970

• Datetime

– which datetime formats

– how in excel/csv
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5.4.5 File format

Their are two data types that are supported:

• plain text files, (typical file extensions are ‘.txt’ or ‘.csv’)

• excel files (.xlsx)

The plain text files are required to be in a specific standard to be correctly interpreted by the framework. Besides
the general structure introduced in the previous section we require the headers to be named exactly the same as the
compartments in the model. This is necessary to match them without any potential misinterpretation. Any columns
which do not have a exact counterpart in the model will be ignored.

Plain text files

Every data sets needs to contain a header defining the names of the columns which are compared to the model com-
partments. The names of the compartment are required to be separated by the chosen delimiter (default `','`)

An example of such a file can be found in the GitHub Repository

The headers has some flexibility how it is defined. The line may start with a comment symbol (default: “#’)

Leading and trailing white spaces in a name are ignored. Hence,

It is also possible to write the name inside of quotation marks. This is typically used to mark character strings. Hence,

Note: If quotation marks are used, the names are parsed literally. As a result of that, leading and trailing whitespaces
are no longer ignored.

Generally, it is assumed that the names of the column are defined in the in the very first row of the document.

If this is not the case, i.e. the file is formatted something like this,

the framework might not know how to interpret it. There are two option how to deal with this. We recommend using
the following format to avoid this problem.

• Use the comment mark (#) for the non-header lines of the data while NO comment mark is used for the column
headers. I.e:

This will work,

# Some additional information about the file and its origin
# before the data column headers are parsed
Datetime, A, B
[...]

this will NOT work

# Some additional information about the file and its origin
# before the data column headers are parsed
# Datetime, A, B
[...]

while THIS will also work.

# Datetime, A, B
[...]
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• Alternatively, the load_ref_data() method has the option to “skip_header= “. However, this requires a manual
re-import of the data and is not recommended.

model = nemf.load_model('path/to/model.yml')
model.load_ref_data('path/to/reference/data.csv',skip_header=5)

Excel files
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CHAPTER 6

API reference

6.1 Importing Model

nemf.load_model(model_path, ref_data_path=None)
Loads a model by reading its model configuration from from file

Parameters

• model_path (string) – path to yaml file containing the model

• ref_data_path (string (optional)) – path to file, plain text or xls(x), con-
taining reference data to the model. See: https://nemf.readthedocs.io/en/latest/README_
reference_data.html

Returns model – class objects that contains the model

Return type nemf_model class

6.2 Model Functions

class nemf.models.model_class(model_path, ref_data_path=None)

load_reference_data(ref_data_path=None, **kwargs)
Loads reference data used in model optimization from file

Either, the path to the reference data is provided in the yaml configuration file or passed to this function.
Latter overwrites the path in the configuration file.

Parameters ref_data_path (string (optional)) – path to the file containing the ref-
erence data

nemf.models.import_interaction_functions(func)
Adds the functions from ‘func’ to the globals in models

func [list] List containing the functions that will be added to globals
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6.3 Visualizing Model

nemf.interaction_graph(model)
shows a graph/network of all compartments and their interactions

6.4 Forcasting Model

nemf.forward_model(model, method=’Radau’, verbose=False, t_eval=None, **kwargs)
Runs the time integration for a provided model configuration.

Parameters

• model (model_class object) – class object containing the model configuration and
its related methods. See load_configuration

• method (string, optional) – Type of solver used for the initial-value problem aka
forecasting. Should be on of:

– ’RK45’ (default): Explicit Runge-Kutta method of order 5(4)1. The error is controlled
assuming accuracy of the fourth-order method, but steps are taken using the fifth-order
accurate formula (local extrapolation is done). A quartic interpolation polynomial is used
for the dense output2. Can be applied in the complex domain.

– ’RK23’: Explicit Runge-Kutta method of order 3(2)3. The error is controlled assuming
accuracy of the second-order method, but steps are taken using the third-order accurate
formula (local extrapolation is done). A cubic Hermite polynomial is used for the dense
output. Can be applied in the complex domain.

– ’DOP853’: Explicit Runge-Kutta method of order 813. Python implementation of the
“DOP853” algorithm originally written in Fortran14. A 7-th order interpolation polyno-
mial accurate to 7-th order is used for the dense output. Can be applied in the complex
domain.

– ’Radau’: Implicit Runge-Kutta method of the Radau IIA family of order 54. The error
is controlled with a third-order accurate embedded formula. A cubic polynomial which
satisfies the collocation conditions is used for the dense output.

– ’BDF’: Implicit multi-step variable-order (1 to 5) method based on a backward differen-
tiation formula for the derivative approximation5. The implementation follows the one
described in6. A quasi-constant step scheme is used and accuracy is enhanced using the
NDF modification. Can be applied in the complex domain.

– ’LSODA’: Adams/BDF method with automatic stiffness detection and switching7,8. This
is a wrapper of the Fortran solver from ODEPACK.

1 J. R. Dormand, P. J. Prince, “A family of embedded Runge-Kutta formulae”, Journal of Computational and Applied Mathematics, Vol. 6, No.
1, pp. 19-26, 1980.

2 L. W. Shampine, “Some Practical Runge-Kutta Formulas”, Mathematics of Computation„ Vol. 46, No. 173, pp. 135-150, 1986.
3 P. Bogacki, L.F. Shampine, “A 3(2) Pair of Runge-Kutta Formulas”, Appl. Math. Lett. Vol. 2, No. 4. pp. 321-325, 1989.

13 E. Hairer, S. P. Norsett G. Wanner, “Solving Ordinary Differential Equations I: Nonstiff Problems”, Sec. II.
14 Page with original Fortran code of DOP853.
4 E. Hairer, G. Wanner, “Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems”, Sec. IV.8.
5 Backward Differentiation Formula on Wikipedia.
6 L. F. Shampine, M. W. Reichelt, “THE MATLAB ODE SUITE”, SIAM J. SCI. COMPUTE., Vol. 18, No. 1, pp. 1-22, January 1997.
7 A. C. Hindmarsh, “ODEPACK, A Systematized Collection of ODE Solvers,” IMACS Transactions on Scientific Computation, Vol 1., pp.

55-64, 1983.
8 L. Petzold, “Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations”, SIAM Journal on

Scientific and Statistical Computing, Vol. 4, No. 1, pp. 136-148, 1983.
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Explicit Runge-Kutta methods (‘RK23’, ‘RK45’, ‘DOP853’) should be used for non-stiff
problems and implicit methods (‘Radau’, ‘BDF’) for stiff problems9. Among Runge-Kutta
methods, ‘DOP853’ is recommended for solving with high precision (low values of rtol and
atol). If not sure, first try to run ‘RK45’. If it makes unusually many iterations, diverges, or
fails, your problem is likely to be stiff and you should use ‘Radau’ or ‘BDF’. ‘LSODA’ can
also be a good universal choice, but it might be somewhat less convenient to work with as it
wraps old Fortran code.

• verbose (bool, optional) – Flag for extra verbosity during runtime

• t_eval (1d-array, optional) – contains time stamps in posix time for which a
solution shall be found and returned.

Returns model – class object containing the model configuration, model run results, and its related
methods

Return type model_class object

References

6.5 Fitting Model

nemf.inverse_model(model, nlp_method=’SLSQP’, ivp_method=’Radau’, sample_sets=3, max-
iter=1000, seed=137, verbose=False, debug=False)

Fits the model to data.

Optimizes a set of randomly generated free parameters and returns their optimized values and the corresponding
fit-model and cost- function output

Parameters

• model (model_class object) – class object containing the model configuration and
its related methods. See load_configuration()

• nlp_method (string, optional) – Type of solver for the non-linear-programming
problem aka fitting. Should be one of:

– ‘trust-constr’

– ‘SLSQP’

– ’L-BFGS-B’

– ’TNC

– ’Powell’

For problems with constraints use one of:

– ‘trust-constr’

– ‘SLSQP’

• ivp_method (string, optional) – Type of solver used for the initial-value problem
aka forecasting. Should be on of:

– ’Radau’ (default): Implicit Runge-Kutta method of the Radau IIA family

– ’RK45’: Explicit Runge-Kutta method of order 5(4)1.

– ’RK23’: Explicit Runge-Kutta method of order 3(2)3.

9 Stiff equation on Wikipedia.
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– ’DOP853’: Explicit Runge-Kutta method of order 813.

– ’BDF’: Implicit multi-step variable-order (1 to 5) method

– ’LSODA’: Adams/BDF method with automatic stiffness detection

Explicit Runge-Kutta methods (‘RK23’, ‘RK45’, ‘DOP853’) should be used for non-stiff
problems and implicit methods (‘Radau’, ‘BDF’) for stiff problems9. Among Runge-Kutta
methods, ‘DOP853’ is recommended for solving with high precision (low values of rtol and
atol). If not sure, first try to run ‘RK45’. If it makes unusually many iterations, diverges, or
fails, your problem is likely to be stiff and you should use ‘Radau’ or ‘BDF’. ‘LSODA’ can
also be a good universal choice, but it might be somewhat less convenient to work with as it
wraps old Fortran code.

• sample_sets (positive integer, optional) – Amount of randomly generated
sample sets used as initial free parameters

• maxiter (positive integer, optional) – Maximal amount of iterations al-
lowed in the gradient descent algorithm.

• seed (positive integer, optional) – Initializes the random number generator.
Used to recreate the same set of pseudo-random numbers. Helpfull when debugging.

• verbose (boo, optional) – Flag for extra verbosity during runtime

Returns model – class object containing the model configuration, model run results (parameters,
model, prediction, cost), and its related methods

Return type model_class object

Notes

Non-linear-programming solvers aka minimizers

Bound-Constrained minimization

Method L-BFGS-B uses the L-BFGS-B algorithm [B6], [B7] for bound constrained minimization.

Method Powell is a modification of Powell’s method [B3], [B4] which is a conjugate direction method. It per-
forms sequential one-dimensional minimizations along each vector of the directions set (direc field in options
and info), which is updated at each iteration of the main minimization loop. The function need not be differ-
entiable, and no derivatives are taken. If bounds are not provided, then an unbounded line search will be used.
If bounds are provided and the initial guess is within the bounds, then every function evaluation throughout
the minimization procedure will be within the bounds. If bounds are provided, the initial guess is outside the
bounds, and direc is full rank (default has full rank), then some function evaluations during the first iteration
may be outside the bounds, but every function evaluation after the first iteration will be within the bounds. If
direc is not full rank, then some parameters may not be optimized and the solution is not guaranteed to be within
the bounds.

Method TNC uses a truncated Newton algorithm [B5], [B8] to minimize a function with variables subject to
bounds. This algorithm uses gradient information; it is also called Newton Conjugate-Gradient. It differs from
the Newton-CG method described above as it wraps a C implementation and allows each variable to be given
upper and lower bounds.

Constrained Minimization

Method SLSQP uses Sequential Least SQuares Programming to minimize a function of several variables with
any combination of bounds, equality and inequality constraints. The method wraps the SLSQP Optimization
subroutine originally implemented by Dieter Kraft [B12]. Note that the wrapper handles infinite values in
bounds by converting them into large floating values. Method trust-constr is a trust-region algorithm for con-
strained optimization. It swiches between two implementations depending on the problem definition. It is the
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most versatile constrained minimization algorithm implemented in SciPy and the most appropriate for large-
scale problems. For equality constrained problems it is an implementation of Byrd-Omojokun Trust-Region
SQP method described in [B17] and in [B5], p. 549. When inequality constraints are imposed as well, it swiches
to the trust-region interior point method described in [B16]. This interior point algorithm, in turn, solves inequal-
ity constraints by introducing slack variables and solving a sequence of equality-constrained barrier problems
for progressively smaller values of the barrier parameter. The previously described equality constrained SQP
method is used to solve the subproblems with increasing levels of accuracy as the iterate gets closer to a solution.

Initial-Value-Problem solvers aka forecasting

The available options are:

• ‘RK45’ (default): Explicit Runge-Kutta method of order 5(4)1. The error is controlled assuming ac-
curacy of the fourth-order method, but steps are taken using the fifth-order accurate formula (local
extrapolation is done). A quartic interpolation polynomial is used for the dense output2. Can be
applied in the complex domain.

• ‘RK23’: Explicit Runge-Kutta method of order 3(2)3. The error is controlled assuming accuracy of
the second-order method, but steps are taken using the third-order accurate formula (local extrapo-
lation is done). A cubic Hermite polynomial is used for the dense output. Can be applied in the
complex domain.

• ‘DOP853’: Explicit Runge-Kutta method of order 813. Python implementation of the “DOP853” algo-
rithm originally written in Fortran14. A 7-th order interpolation polynomial accurate to 7-th order is
used for the dense output. Can be applied in the complex domain.

• ‘Radau’: Implicit Runge-Kutta method of the Radau IIA family of order 54. The error is controlled
with a third-order accurate embedded formula. A cubic polynomial which satisfies the collocation
conditions is used for the dense output.

• ‘BDF’: Implicit multi-step variable-order (1 to 5) method based on a backward differentiation for-
mula for the derivative approximation5. The implementation follows the one described in6. A quasi-
constant step scheme is used and accuracy is enhanced using the NDF modification. Can be applied
in the complex domain.

• ‘LSODA’: Adams/BDF method with automatic stiffness detection and switching7,8. This is a wrap-
per of the Fortran solver from ODEPACK.

Explicit Runge-Kutta methods (‘RK23’, ‘RK45’, ‘DOP853’) should be used for non-stiff problems and implicit
methods (‘Radau’, ‘BDF’) for stiff problems9. Among Runge-Kutta methods, ‘DOP853’ is recommended for
solving with high precision (low values of rtol and atol). If not sure, first try to run ‘RK45’. If it makes
unusually many iterations, diverges, or fails, your problem is likely to be stiff and you should use ‘Radau’ or
‘BDF’. ‘LSODA’ can also be a good universal choice, but it might be somewhat less convenient to work with as
it wraps old Fortran code.

References

6.6 Visualizing Results

nemf.output_summary(model)
reads the data saved in the model class and depending on this data chooses a visualization method with the help
of draw_output_summary to present the results
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CHAPTER 7

Interaction Functions

Here a list of all currently implemented interaction functions is presented. These can be used in the YAML model
configuration to describe interactions between to compartments.

Note: The compartments are referenced via indices in the implementation of the interaction functions. This is simply
an implementation detail. The user can (and should) use the compartment names when referencing them in the YAML
configuration file. The framework handles the mapping of the names to the corresponding indeces internally.

nemf.interaction_functions.excretion(X, idx_A, idx_B, coefficient)
linear response with respect to origin/prey compartment

Parameters

• X (np.array) – containing the current state of the contained quantity of each compartment

• idx_A (integer) – index of the element representing the destination/predator compart-
ment

• idx_B (integer) – index of the element representing the origin/pray compartment

• coefficient (float) – governs the slope of the linear response

Returns df – change in the origin and destitnation compartment. Calculated by coeffi-
cient*origin_compartment

Return type float

nemf.interaction_functions.exudation(X, idx_A, idx_B, coefficient)
linear response with respect to origin/prey compartment

Parameters

• X (np.array) – containing the current state of the contained quantity of each compartment

• idx_A (integer) – index of the element representing the destination/predator compart-
ment

• idx_B (integer) – index of the element representing the origin/pray compartment
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• coefficient (float) – governs the slope of the linear response

Returns df – change in the origin and destitnation compartment. Calculated by coeffi-
cient*origin_compartment

Return type float

nemf.interaction_functions.holling_type_0(X, idx_A, coefficient)
linear response with respect to destination/predator compartment

For examples see: Examples

Parameters

• X (np.array) – containing the current state of the contained quantity of each compartment

• idx_A (integer) – index of the element representing the destination/predator compart-
ment

• idx_B (integer) – index of the element representing the origin/pray compartment

• coefficient (float) – governs the slope of the linear response

Returns df – change in the origin and destitnation compartment. Calculated by coeffi-
cient*destination_compartment

Return type float

nemf.interaction_functions.holling_type_I(X, idx_A, idx_B, coefficient)

linear response with respect to both origin/pray and destination/predator compartment.

For examples see: Examples

Parameters

• X (np.array) – containing the current state of the contained quantity of each compartment

• idx_A (integer) – index of the element representing the destination/predator compart-
ment

• idx_B (integer) – index of the element representing the origin/pray compartment

• coefficient (float) – governs the slope of the linear response

Returns df – change in the origin and destitnation compartment. Calculated by coefficient * ori-
gin_compartment * destination_compartment

Return type float

nemf.interaction_functions.holling_type_II(X, idx_A, idx_B, food_processing_time, hunt-
ing_rate)

non-linear response with respect to origin/pray with linear response with respect to destination/predator
compartment

The response with respect to the origin compartment ‘B’ is approximately linear for small ‘B’ and converges
towards an upper limit governed by the ‘food_processing_time’ for large ‘B’. For examples see: Examples

Parameters

• X (np.array) – containing the current state of the contained quantity of each compartment

• idx_A (integer) – index of the element representing the destination/predator compart-
ment

• idx_B (integer) – index of the element representing the origin/pray compartment

• coefficient (float) – governs the slope of the linear response
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Returns df – change in the origin and destitnation compartment. Calculated by consumption_rate
= ((hunting_rate * origin_compartment) / (1 + hunting_rate * food_processing_time * ori-
gin_compartment)) * destination_compartment

Return type float

nemf.interaction_functions.holling_type_III(X, idx_A, idx_B, saturation_rate, consump-
tion_rate_limit)

non-linear response with respect to origin/pray with linear response with respect to destination/predator
compartment

The response with respect to the origin compartment ‘B’ is approximately quadratic for small ‘B’ and converges
towards an upper limit governed by the ‘food_processing_time’ for large ‘B’. For examples see: Examples

Parameters

• X (np.array) – containing the current state of the contained quantity of each compartment

• idx_A (integer) – index of the element representing the destination/predator compart-
ment

• idx_B (integer) – index of the element representing the origin/pray compartment

• saturation_rate (float) – first parameter of the interaction. governs the slope of the
non lineare response for small pray populations.

• consumption_rate_limit (float) – second parameter of the interaction. governs
the upper limit of the response.

Returns

df – change in the origin and destitnation compartment. Calculated by consumption_rate =
((consumption_rate_limit * saturation_rate * B**2)/

(consumption_rate_limit + (saturation_rate*B**2)))*A

Return type float

nemf.interaction_functions.inverse_type_0(X, idx_A, idx_B, coefficient)
linear response with respect to origin/prey compartment

Parameters

• X (np.array) – containing the current state of the contained quantity of each compartment

• idx_A (integer) – index of the element representing the destination/predator compart-
ment

• idx_B (integer) – index of the element representing the origin/pray compartment

• coefficient (float) – governs the slope of the linear response

Returns df – change in the origin and destitnation compartment. Calculated by coeffi-
cient*origin_compartment

Return type float

nemf.interaction_functions.linear_mortality(X, idx_A, idx_B, coefficient)
linear response with respect to origin/prey compartment

Parameters

• X (np.array) – containing the current state of the contained quantity of each compartment

• idx_A (integer) – index of the element representing the destination/predator compart-
ment
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• idx_B (integer) – index of the element representing the origin/pray compartment

• coefficient (float) – governs the slope of the linear response

Returns df – change in the origin and destitnation compartment. Calculated by coeffi-
cient*origin_compartment

Return type float

nemf.interaction_functions.non_negative_dual_nutrient_limited_growth(X,
idx_A,
idx_B,
growth_rate,
half_saturation,
sec-
ond_nutrient,
sec-
ond_half_saturation)

nemf.interaction_functions.non_negative_excretion(X, idx_A, idx_B, coefficient)

nemf.interaction_functions.non_negative_exudation(X, idx_A, idx_B, coefficient)

nemf.interaction_functions.non_negative_holling_type_0(X, idx_A, coefficient)

nemf.interaction_functions.non_negative_holling_type_I(X, idx_A, idx_B, coefficient)

nemf.interaction_functions.non_negative_holling_type_II(X, idx_A, idx_B,
food_processing_time,
hunting_rate)

nemf.interaction_functions.non_negative_inverse_type_0(X, idx_A, idx_B, coefficient)

nemf.interaction_functions.non_negative_linear_mortality(X, idx_A, idx_B, coeffi-
cient)

nemf.interaction_functions.non_negative_nutrient_limited_growth(X, idx_A,
idx_B,
growth_rate,
half_saturation)

nemf.interaction_functions.non_negative_remineralisation(X, idx_A, idx_B, coeffi-
cient)

nemf.interaction_functions.non_negative_stress_dependant_exudation(X, idx_A,
idx_B, co-
efficient)

nemf.interaction_functions.nutrient_limited_growth(X, idx_A, idx_B, growth_rate,
half_saturation)

non-linear response with respect to destination/predator compartment

Similar to holling_type_II and is a reparameterization of holling II. The response with respect to the origin
compartment ‘B’ is approximately linear for small ‘B’ and converges towards an upper limit governed by the
‘growth_rate’ for large ‘B’. For examples see: Examples

Parameters

• X (np.array) – containing the current state of the contained quantity of each compartment

• idx_A (integer) – index of the element representing the destination/predator compart-
ment

• idx_B (integer) – index of the element representing the origin/pray compartment
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• growth_rate (float) – first parameter of the interaction. governs the upper limit of the
response.

• half_saturation (float) – second parameter of the interaction. governs the slope of
the response.

Returns df – change in the origin and destitnation compartment. Calculated by consumption_rate
= ((hunting_rate * origin_compartment) / (1 + hunting_rate * food_processing_time * ori-
gin_compartment)) * destination_compartment

Return type float

nemf.interaction_functions.remineralisation(X, idx_A, idx_B, coefficient)

linear response with respect to both origin/pray and destination/predator compartment.

For examples see: Examples

Parameters

• X (np.array) – containing the current state of the contained quantity of each compartment

• idx_A (integer) – index of the element representing the destination/predator compart-
ment

• idx_B (integer) – index of the element representing the origin/pray compartment

• coefficient (float) – governs the slope of the linear response

Returns df – change in the origin and destitnation compartment. Calculated by coefficient * ori-
gin_compartment * destination_compartment

Return type float

nemf.interaction_functions.sloppy_feeding(holling_type, coeff, *args)
calls holling_type functions with an extra “efficiency” coefficient. the inverse of the efficiency is then supposed
to flow into a different compartment

nemf.interaction_functions.stress_dependant_exudation(X, idx_A, idx_B, coefficient)

linear response with respect to both origin/pray and destination/predator compartment.

For examples see: Examples

Parameters

• X (np.array) – containing the current state of the contained quantity of each compartment

• idx_A (integer) – index of the element representing the destination/predator compart-
ment

• idx_B (integer) – index of the element representing the origin/pray compartment

• coefficient (float) – governs the slope of the linear response

Returns df – change in the origin and destitnation compartment. Calculated by coefficient * ori-
gin_compartment * destination_compartment

Return type float
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CHAPTER 8

Releases

8.1 v0.3.3 (June 2020)

This is a minor release introducing new options for both non-linear-programming aka fitting solvers and initial-value-
problem aka forecasting solvers. It also brings some bugfixes and consistency changes as well as additional documen-
tation.

8.2 New Non-Linear-Programming (NLP) solvers

Previously, only the two solvers that worked in all cases (bounded, constraint & bounded) were properly implemented.

However, both ‘SLSQP’ and ‘trust-constr’ showed to be sometimes outperformed by other solvers. ‘trust-constr’
showed to be much slower, and ‘SLSQP’ while fast sometimes exited without actually optimizing the result. For that
reason we added additional solves which are available in the case where no constraints are present.

The full list of solvers is now:* ‘SLSQP’ * ‘trust-constr’ * ‘L-BFGS-B’ * ‘TNC’ * ‘Powell’ where the bold ones are
newly implemented. To distinguish the NLP and IVP solvers, the key used to pass them to the inverse_model has been
changed from ‘method’ to ‘nlp_method’. For more detail, see the API references

8.3 New Initial-Value-Problem (IVP) solvers

Previously, the IVP solver was not free for the user to change and always defaulted to de ‘RK45’ solver. However,
the ‘RK45’ showed to have some issues. In some cases it got stuck, mostly because the numerical errors resulted in
negative compartment values even if the ODE would not allow it. Hence, the error increased over time drastically and
the output, if calculated in a reasonable time were unusable.

Other solvers showed to performed better in these circumstances. The default solver is now ‘Radau’. While it is
generally slower then the ‘RK45’ it showed to perform better in the above described circumstances.
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The full list of IVP solvers is now: * ‘Radau’ (default) * ‘RK45’ * ‘RK23’ * ‘DOP853’ * ‘BDF’ * ‘LSODA’ To
distinguish the NLP and IVP solvers, the key used to pass them is called ‘ivp_method’. For more detail, see the API
references

8.4 Bug fixed and consistency changes

8.4.1 Changes

• Different verbosity options can now be used for ‘trust-constr’, providing more information during runtime. See
API references for more details.

• Changed the output of the load_reference_data() function. Previously it returned the output directly. Hence, the
user had to pass it back to the model. Because there is (currently) no application to use it without passing it back
to the model it does this now automatically.

8.4.2 Bugs

• load_model() did not allow to not pass a reference data path as presented in the examples. This is now possible.

• load_reference_data() did not correctly accept keyword arguments but only non-keyword ones. This as an error
as all optional ones are kwargs.

8.4.3 Minor internal changes

• internal: In some cases the reference data sets have been referred to as ‘fit data’ because it has been at some
point during development used exclusively for fitting. Because is does not need to be used to fit anymore but
can also be used to plot, we now call it reference data everywhere.

• internal: The data type used to describe the bounds of parameters during the optimization process was inconsis-
tent. The compartments used list while the interactions used sets. This was not also inconsistent but also caused
issues as some solvers did not parse them correctly. Now, all bounds are passed as lists.

8.5 v0.3.2 (June 2020)

This is a minor release introducing the new name “nemf” of the framework as well as a improved reference data import
and some changes in the plotting of the framework output.

8.5.1 New name

The framework has been renamed General Ecosystem Modelling Framework (GEMF) to Network-based Ecosystem
Modelling Framework (NEMF).

While it still remains a general modelling framework, the name change shall emphasis the core distinguishing con-
cept that distinguishes it from other other modelling frameworks. Additionally, the network concept is key concept
that users need to work with and keep in mind while using the framework, while the general-aspekt fades into the
background once the framework has been chosen.
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8.5.2 Better reference data input

• Previously reference data had to be provided for all modelled compartments. It is now possible to provide
reference data for only a subset of the compartment.

– Datasets must now contain a header that contains the names of the columns which will be compared to the
compartment names.

– Data that is present in the reference data set which does not correspond to modelled compartment will now
be simply ignored and does not need be removed manually. However, this also requires the header names
to match the compartment names exactly.

• New feature of “Datetime” timestamps for reference data in excel files. “Datetimes” (i.e. ‘18.09.1783 12:34’)
are automatically transformed into the default POSIX timestamp (seconds before/after 1.1.1970).

8.5.3 Plotting changes

• Major: Output summary plots now automatically use scatter plots instead of line plots if the amount of data
points is low. This has two main reasons:

– Plots with only one point are now also proprly drawn. (Lines require two points, and are drawn empty if
only one is present)

– Avoids implying a linear behavior between two distant points, which can confuse the user while interpret
ing the plot.

• Minor: Implemented a new color selection scheme when plotting. This avoids that colors are reused when many
lines are present. Additionally, it makes sure that the reference data and model output use the same colors, even
if only a subset of the model compartments is present in the refer data.

8.5.4 Other changes

• The interaction function nutrition_limited_growth has been renamed to nutrient_limited_growth.

• load_model now also allows the import of reference data.

• Many new descriptions and comments have been added to the documentation

8.6 v0.3.1 (June 2020)

This is a minor release introducing a user-friendly option to rename interaction functions as well as constraints for
optimized parameters. An initial documentation has been drafted and is hosted on readthedocs.io.

8.6.1 Importing and renaming interaction functions

• init_alternative_interaction_names( )This is called when ever a new model i initialized. It checks if alternative
names for an existing interaction were declared in the yaml configuration file. For details check the docs.

• import_interaction_functions( )This can be called in the execution file by the user to import user-defined or
renamed interaction functions. For details check the docs.

The previous version of renaming interaction functions was to declare the alternative names in the execution file.
However, this did not work consistently in all execution environments. Therefore, we now introduce to dedicated
functions to rename and/or import interaction functions.
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8.6.2 Importing constraints

• Added import_constraints( )Reads constraints from an python file and adds them to the model. For details check
the docs.

In some circumstances, the parameter fitted in an optimization run are not independent of each other. I.e. one might
want to enforce that sum of two parameters is always equal to one. Such a behavior is enforced through ‘constraints’.

8.6.3 Documentation

• Hosted the current drafts of the documentation on readthedocs.io.

• Documentation created via sphinx

• Added automated API reference creation based on docstrings via autodoc

8.7 v0.3.0 (May 2020)

This is a major release introducing scipy’s integration and optimization routines into the framework.

8.7.1 Replaced reference data import

• Removed the old reference data input which only allowed for simple steady-state fitting

• New version requires the data to be stored in a separate file and imported either by passing the link in the yaml
file or when calling the inverse_method routine. The latter overwrites the path given in the yaml file.

8.7.2 New forward modelling

• Replaced the self written time_integration routine with scipy.integrate.solve_ivp.

• Adjusted forward_model and plotting routines accordingly and introduced supporting functions.

8.7.3 New inverse modelling

• Replaced the self written gradient_descent method with scipy.optimize.minimize.

• Adjusted inverse_model and plotting routines accordingly and introduced supporting functions.

8.7.4 Visualization

• Added initial_guess plotting function to visualize the model output before any optimization has been applied.
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